Skip to main content
Log in

Maximum Principle of Optimal Control of the Primitive Equations of the Ocean with Two Point Boundary State Constraint

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

We study in this article the Pontryagin’s maximum principle for a class of control problems associated with the primitive equations (PEs) of the ocean with two point boundary state constraint. These optimal problems involve a two point boundary state constraint similar to that considered in Wang, Nonlinear Anal. 51, 509–536, 2002 for the three-dimensional Navier-Stokes (NS) equations. The main difference between this work and Wang, Nonlinear Anal. 51, 509–536, 2002 is that the nonlinearity in the PEs is stronger than in the three-dimensional NS systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303–325 (1990)

    Article  MATH  Google Scholar 

  2. Belmiloudi, A., Broissier, F.: A control method for assimilation of surface data in a linearized Navier-Stokes-type problem related to oceanography. SIAM J. Control Optim. 35(6), 2183–2197 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bennett, A.: Inverse Methods in Physical Oceanography. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  4. Cao, C., Titi, E.S.: Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model. Commun. Pure Appl. Math. 56(2), 198–233 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. (2) 166(1), 245–267 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Haltiner, G.J., Williams, R.T.: Numerical Prediction and Dynamic Meteorology. Wiley, New York (1980)

    Google Scholar 

  7. Hu, C.: Asymptotic analysis of the primitive equations under the small depth assumption. Nonlinear Anal. 61(3), 425–460 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hu, C., Temam, R., Ziane, M.: Regularity results for linear elliptic problems related to the primitive equations. Chin. Ann. Math. 23B(2), 1–16 (2002)

    MathSciNet  Google Scholar 

  9. Hu, C., Temam, R., Ziane, M.: The primitive equations of the large scale ocean under the small depth hypothesis. Discrete Contin. Dyn. Syst. 9(1), 97–131 (2003)

    MATH  MathSciNet  Google Scholar 

  10. Ju, N.: The global attractor for the solutions to the 3D viscous primitive equations. Discrete Contin. Dyn. Syst. 17(1), 159–179 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Le Dimet, F.X., Shutyaev, V.P.: On newton methods in data assimilation. Russ. J. Numer. Anal. Math. Model. 15(5), 419–434 (2000)

    Article  MATH  Google Scholar 

  12. Li, S.: Optimal controls of Boussinesq equations with state constraints. Nonlinear Anal. 60, 1485–1508 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995)

    Google Scholar 

  14. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1970)

    Google Scholar 

  15. Lions, J.L., Temam, R., Wang, S.: On the equations of large-scale ocean. Nonlinearity 5, 1007–1053 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lions, J.L., Temam, R., Wang, S.: Models of the coupled atmosphere and ocean (CAO I). Comput. Mech. Adv. 1, 3–54 (1993)

    MATH  MathSciNet  Google Scholar 

  17. Lions, J.L., Temam, R., Wang, S.: Numerical analysis of the coupled atmosphere and ocean models (CAOII). Comput. Mech. Adv. 1, 55–120 (1993)

    MATH  MathSciNet  Google Scholar 

  18. Lions, J.L., Temam, R., Wang, S.: Mathematical study of the coupled models of atmosphere and ocean (CAOIII). Math. Pures Appl. 73, 105–163 (1995)

    MathSciNet  Google Scholar 

  19. Lions, J.L., Temam, R., Wang, S.: On mathematical problems for the primitive equations of the ocean: the mesoscale midlatitude case. Lakshmikantham’s legacy: a tribute on his 75th birthday. Nonlinear Anal. Ser. A, Theory Methods 40(1–8), 439–482 (2000)

    Article  MathSciNet  Google Scholar 

  20. Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer, New York (1987)

    MATH  Google Scholar 

  21. Peixoto, J.P., Oort, A.H.: Physics of Climate. American Institute of Physics, New York (1992)

    Google Scholar 

  22. Tachim Medjo, T.: On the convergence of the primitive equations of the ocean as the aspect ratio goes to zero. Appl. Anal. (2007, to appear)

  23. Tachim Medjo, T.: Optimal control of the primitive equations of the ocean with state control (2007, submitted)

  24. Tachim Medjo, T.: On strong solutions of the multi-layer quasi-geostrophic equations of the ocean. Nonlinear Anal. 68, 3550–3564 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tachim Medjo, T., Temam, R.: A small eddy correction algorithm for the primitive equations of the ocean. In: Konate, D. (ed.) Mathematical Modeling, Simulation, Visualization and e-Learning: Proceedings of the Bellagio International Conference, pp. 107–150. Springer, Berlin (2007)

    Google Scholar 

  26. Tachim Medjo, T., Temam, R.: A two-grid finite difference method for the primitive equations of the ocean. Nonlinear Anal. 69, 1034–1056 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Appl. Math. Sci., vol. 68. Springer, New York (1988)

    MATH  Google Scholar 

  28. Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. AMS-Chelsea Series. AMS, Providence (2001)

    MATH  Google Scholar 

  29. Tziperman, E., Thacker, W.C.: An optimal-control/adjoint approach to studying the oceanic general circulation. J. Phys. Oceanogr. 19, 1471–1485 (1989)

    Article  Google Scholar 

  30. Wang, G.: Optimal controls of 3-dimensional Navier-Stokes equations with state constraints. SIAM J. Control Optim. 41(2), 583–606 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wang, G.: Pontryagin maximum principle of optimal control governed by fluid dynamic systems with two point boundary state constraint. Nonlinear Anal. 51, 509–536 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wang, G.: Pontryagin’s maximum principle for optimal control of the stationary Navier-Stokes equations. Nonlinear Anal. 52, 1853–1866 (2003)

    Google Scholar 

  33. Wang, G., Wang, L.: Maximum principle of state-constrained optimal control governed by fluid dynamic systems. Nonlinear Anal. 52, 1911–1931 (2003)

    Google Scholar 

  34. Washington, W.M., Parkinson, C.L.: An Introduction to Three-Dimensional Climate Modeling. Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

  35. Wunsch, C.: The Ocean Circulation Inverse Problem. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  36. Zupanski, D.: A general weak constraint applicable to operational 4D-var data assimilation system. Mon. Weather Rev. 125, 2274–2292 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Tachim Medjo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tachim Medjo, T. Maximum Principle of Optimal Control of the Primitive Equations of the Ocean with Two Point Boundary State Constraint. Appl Math Optim 62, 1–26 (2010). https://doi.org/10.1007/s00245-009-9092-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-009-9092-y

Navigation