Skip to main content
Log in

An Extremal Eigenvalue Problem for a Two-Phase Conductor in a Ball

  • Published:
Applied Mathematics and Optimization Aims and scope Submit manuscript

Abstract

The pioneering works of Murat and Tartar (Topics in the mathematical modeling of composite materials. PNLDE 31. Birkhäuser, Basel, 1997) go a long way in showing, in general, that problems of optimal design may not admit solutions if microstructural designs are excluded from consideration. Therefore, assuming, tactilely, that the problem of minimizing the first eigenvalue of a two-phase conducting material with the conducting phases to be distributed in a fixed proportion in a given domain has no true solution in general domains, Cox and Lipton only study conditions for an optimal microstructural design (Cox and Lipton in Arch. Ration. Mech. Anal. 136:101–117, 1996). Although, the problem in one dimension has a solution (cf. Kreĭn in AMS Transl. Ser. 2(1):163–187, 1955) and, in higher dimensions, the problem set in a ball can be deduced to have a radially symmetric solution (cf. Alvino et al. in Nonlinear Anal. TMA 13(2):185–220, 1989), these existence results have been regarded so far as being exceptional owing to complete symmetry. It is still not clear why the same problem in domains with partial symmetry should fail to have a solution which does not develop microstructure and respecting the symmetry of the domain. We hope to revive interest in this question by giving a new proof of the result in a ball using a simpler symmetrization result from Alvino and Trombetti (J. Math. Anal. Appl. 94:328–337, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvino, A., Lions, P.L., Trombetti, G.: Optimization problems with prescribed rearrangements. Nonlinear Anal. TMA 13(2), 185–220 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alvino, A., Trombetti, G.: A lower bound for the first eigenvalue of an elliptic operator. J. Math. Anal. Appl. 94, 328–337 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)

    MATH  Google Scholar 

  4. Brezis, H.: Analyse Fonctionnelle-Théorie et Applications. Dunod, Paris (1983)

    MATH  Google Scholar 

  5. Burton, G.R.: Rearrangements of functions, maximization of convex functionals and vortex rings. Math. Ann. 276, 225–253 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chong, K.M., Rice, N.M.: Equimeasurable rearrangements of functions. Queen’s Papers in Pure and Applied Mathematics n. 28, Queen’s University, Ontario (1971)

  7. Cianchi, A., Fusco, N.: Steiner symmetric extremals in Pólya-Szegö type inequalities. Adv. Math. 203, 673–728 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Wiley-Interscience, New York (1962)

    MATH  Google Scholar 

  9. Cox, S., McLaughlin, J.R.: Extremal eigenvalue problems for composite membranes I. Appl. Math. Optim. 22(2), 153–167 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cox, S., McLaughlin, J.R.: Extremal eigenvalue problems for composite membranes II. Appl. Math. Optim. 22(2), 169–187 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cox, S., Lipton, R.: Extremal eigenvalue problems for two-phase conductors. Arch. Ration. Mech. Anal. 136, 101–117 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Henrot, H.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  13. Kreĭn, M.G.: On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability. AMS Transl. Ser. 2(1), 163–187 (1955)

    Google Scholar 

  14. Kawohl, B.: Rearrangement and Convexity of Level Sets in PDE. LNM, vol. 1150. Springer, Berlin (1985)

    Google Scholar 

  15. Kesavan, S.: Topics in Functional Analysis and Applications. Wiley, Chichester (1989)

    MATH  Google Scholar 

  16. Kesavan, S.: Symmetrization and Applications. World Scientific, Singapore (2006)

    MATH  Google Scholar 

  17. Kreĭn, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Am. Math. Soc. Transl. 26 (1950)

  18. Migliaccio, L.: Sur une condition de Hardy, Liitlewood, Polya. C.R. Hebd. Séanc. Acad. Sci. Paris 297, 25–28 (1983)

    MATH  MathSciNet  Google Scholar 

  19. Murat, F., Tartar, L.: Calculus of Variations and Homogenization (engl. transl. of original french article). In: Cherkaev, A., Kohn, R.V. (eds.) Topics in the Mathematical Modelling of Composite Materials. PNLDE, vol. 31. Birkhäuser, Basel (1997)

    Google Scholar 

  20. Polya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Ann. Math. Stud., vol. 27. Princeton Univ. Press, Princeton (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Mahadevan.

Additional information

C. Conca thanks the MICDB for partial support through Grant ICM P05-001-F, Fondap-Basal-Conicyt, and the Chilean & French Governments through Ecos-Conicyt Grant C07 E05.

R. Mahadevan was supported by FONDECYT No. 1070675 and CMM, Univ. de Chile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conca, C., Mahadevan, R. & Sanz, L. An Extremal Eigenvalue Problem for a Two-Phase Conductor in a Ball. Appl Math Optim 60, 173–184 (2009). https://doi.org/10.1007/s00245-008-9061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-008-9061-x

Keywords

Navigation