Skip to main content
Log in

Characterization of Two-Scale Gradient Young Measures and Application to Homogenization

  • Published:
Applied Mathematics and Optimization Aims and scope Submit manuscript

Abstract

This work is devoted to the study of two-scale gradient Young measures naturally arising in nonlinear elasticity homogenization problems. Precisely, a characterization of this class of measures is derived and an integral representation formula for homogenized energies, whose integrands satisfy very weak regularity assumptions, is obtained in terms of two-scale gradient Young measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Müller, S.: A new approach to variational problems with multiple scales. Commun. Pure Appl. Math. 54, 761–825 (2001)

    Article  MATH  Google Scholar 

  2. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosio, L., Frid, H.: Multiscale Young measures in almost periodic homogenization and applications. Preprint CVGMT (2005)

  4. Anza Hafsa, O., Mandallena, J.-P., Michaille, G.: Homogenization of periodic nonconvex integral functionals in terms of Young measures. ESAIM Control Optim. Calc. Var. 12, 35–51 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baía, M., Fonseca, I.: Γ-convergence of functionals with periodic integrands via 2-scale convergence. Preprint CNA (2005)

  6. Baía, M., Fonseca, I.: The limit behavior of a family of variational multiscale problems. Indiana Univ. Math. J. 56, 1–50 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ball, J.M.: A version of the fundamental theorem for Young measures, PDE’s and continuum models for phase transitions. Lect. Notes Phys. 334, 207–215 (1989)

    Article  Google Scholar 

  8. Ball, J.M., James, R.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 15–52 (1987)

    Article  MathSciNet  Google Scholar 

  9. Barchiesi, M.: Multiscale homogenization of convex functionals with discontinuous integrand. J. Convex Anal. 14, 205–226 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Barchiesi, M.: Loss of polyconvexity by homogenization: a new example. Calc. Var. Partial Diff. Equ. 30, 215–230 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bonnetier, E., Conca, C.: Approximation of Young measures by functions and application to a problem of optimal design for plates with variable thickness. Proc. R. Soc. Edinb. Sect. A 124, 399–422 (1994)

    MATH  MathSciNet  Google Scholar 

  12. Braides, A.: Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. XL. 103, 313–322 (1985)

    MathSciNet  Google Scholar 

  13. Braides, A.: A Short Introduction to Young Measures. Lecture Notes SISSA (1999)

  14. Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals. Oxford Lecture Series in Mathematics and its Applications, vol. 12. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  15. Braides, A., Fonseca, I., Francfort, G.A.: 3D–2D asymptotic analysis for inhomogeneous thin films. Indiana Univ. Math. J. 49, 1367–1404 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chipot, M., Kinderlehrer, D.: Equilibrium configurations of crystals. Arch. Ration. Mech. Anal. 103, 237–277 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. DiPerna, R.J.: Convergence of approximate solutions to conservation laws. Arch. Ration. Mech. Anal. 82, 27–70 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Weinan, E.: Homogenization of linear and nonlinear transport equations. Commun. Pure Appl. Math. 45, 301–326 (1992)

    Article  MATH  Google Scholar 

  19. Fonseca, I.: Variational methods for elastic crystals. Arch. Ration. Mech. Anal. 97, 189–220 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fonseca, I., Müller, S., Pedregal, P.: Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29, 736–756 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kinderlehrer, D., Pedregal, P.: Characterization of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115, 329–365 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4, 59–90 (1994)

    MATH  MathSciNet  Google Scholar 

  23. Lukkassen, D., Nguetseng, G., Wall, P.: Two scale convergence. Int. J. Pure Appl. Math. 2, 35–86 (2002)

    MATH  MathSciNet  Google Scholar 

  24. Maestre, F., Pedregal, P.: Quasiconvexification in 3-D for a variational reformulation of an optimal design problem in conductivity. Nonlinear Anal. 64, 1962–1976 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation, vol. 13. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  26. Marcellini, P.: Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl. 117, 139–152 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. Müller, S.: Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Ration. Mech. Anal. 99, 189–212 (1987)

    Article  MATH  Google Scholar 

  28. Müller, S.: Variational models for microstructure and phase transitions. In: Lecture Notes in Mathematics, vol. 1713, pp. 85–210. Springer, Berlin (1999)

    Google Scholar 

  29. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pedregal, P.: Parametrized measures and variational principles. In: Progress in Nonlinear Differential Equations and their Applications, vol. 30. Birkhäuser, Basel (1997)

    Google Scholar 

  31. Pedregal, P.: From micro to macroenergy through Young measures. Meccanica 40, 329–338 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pedregal, P.: Vector variational problems and applications to optimal design. ESAIM Control Optim. Calc. Var. 11, 357–381 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Pedregal, P.: Multiscale Young measures. Trans. Am. Math. Soc. 358, 591–602 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Roubíček, T.: Relaxation in Optimization Theory and Variational Calculus. Series in Nonlinear Analysis and Applications. De Gruyter, Berlin (1997)

    MATH  Google Scholar 

  35. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Knops, R.J. (ed.) Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, vol. IV. Research Notes in Mathematics, vol. 39, pp. 136–212. Pitman, London (1979)

    Google Scholar 

  36. Valadier, M.: Désintégration d’une mesure sur un produit. C.R. Acad. Ac. Paris Sér. A 276, 33–35 (1973)

    MATH  MathSciNet  Google Scholar 

  37. Valadier, M.: Young measures. In: Methods of Nonconvex Analysis. Lecture Notes in Mathematics, pp. 152–188. Springer, Berlin (1990)

    Google Scholar 

  38. Valadier, M.: Admissible functions in two-scale convergence. Portug. Math. 54, 148–164 (1997)

    MathSciNet  Google Scholar 

  39. Young, L.C.: Lectures on the Calculus of Variations and Optimal Control Theory. Saunders, Philadelphia (1969)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Babadjian.

Additional information

Correspondence to: Jean-François Babadjian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babadjian, JF., Baía, M. & Santos, P.M. Characterization of Two-Scale Gradient Young Measures and Application to Homogenization. Appl Math Optim 57, 69–97 (2008). https://doi.org/10.1007/s00245-007-9012-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-007-9012-y

Keywords

Navigation