Skip to main content

Advertisement

Log in

Copper Speciation and Microbial Activity in Long-Term Contaminated Soils

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract.

Most soil quality guidelines do not distinguish among the various forms of metals in soils; insoluble, nonreactive, and nonbioavailable forms are deemed as hazardous as highly soluble, reactive, and toxic forms. The objective of this study was to better understand the long-term effects of copper on microorganisms in relation to its chemical speciation in the soil environment. Carbon mineralization processes and the global structure of different microbial communities (fungi, eubacteria, actinomycetes) are still affected after more than 50 years of copper contamination in 20 soils sampled from two different agricultural sites. The microbial respiration lag period (LP) preceding the beginning of mineralization process increases with the level of soil copper contamination and is not significantly affected by other environmental factors such as soil pH and soil organic matter (SOM) content. The total copper concentration showed the best correlation with the LP when each site is considered separately. However, when considering the whole set of data, soil solution free Cu2+ activity (pCu2+) is the best predictor of Cu toxicity determined by LP (quite likely because pCu2+ integrates the soil physicochemical variability). The maximum mineralization rate (MMR), even if well correlated with the pCu2+, appears not to be a good biomonitor of copper contamination in soils since it is highly sensitive to soil characteristics such as SOM content. This study emphasizes the importance of the physicochemical properties of the environment on soil heavy metal toxicity and on soil toxicological measurements. These properties must be characterized in soil toxicological studies with respect to (1) their interactions with heavy metals, and (2) their direct impact on the selected biological test. The measurement of pCu2+ to characterize the level of soil contamination and of lag period as a bioindicator of metal effects in the soil are recognized as useful tools for the evaluation of the biological quality of soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 30 May 1998/Accepted: 14 September 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumestre, A., Sauvé, S., McBride, M. et al. Copper Speciation and Microbial Activity in Long-Term Contaminated Soils . Arch. Environ. Contam. Toxicol. 36, 124–131 (1999). https://doi.org/10.1007/s002449900451

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002449900451

Keywords

Navigation