Skip to main content
Log in

The Roles of Diet and Habitat Use in Pesticide Bioaccumulation by Juvenile Chinook Salmon: Insights from Stable Isotopes and Fatty Acid Biomarkers

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Stable isotopes (SI) and fatty acid (FA) biomarkers can provide insights regarding trophic pathways and habitats associated with contaminant bioaccumulation. We assessed relationships between SI and FA biomarkers and published data on concentrations of two pesticides [dichlorodiphenyltrichloroethane and degradation products (DDX) and bifenthrin] in juvenile Chinook Salmon (Oncorhynchus tshawytscha) from the Sacramento River and Yolo Bypass floodplain in Northern California near Sacramento. We also conducted SI and FA analyses of zooplankton and macroinvertebrates to determine whether particular trophic pathways and habitats were associated with elevated pesticide concentrations in fish. Relationships between DDX and both sulfur (δ34S) and carbon (δ13C) SI ratios in salmon indicated that diet is a major exposure route for DDX, particularly for individuals with a benthic detrital energy base. Greater use of a benthic detrital energy base likely accounted for the higher frequency of salmon with DDX concentrations > 60 ng/g dw in the Yolo Bypass compared to the Sacramento River. Chironomid larvae and zooplankton were implicated as prey items likely responsible for trophic transfer of DDX to salmon. Sulfur SI ratios enabled identification of hatchery-origin fish that had likely spent insufficient time in the wild to substantially bioaccumulate DDX. Bifenthrin concentration was unrelated to SI or FA biomarkers in salmon, potentially due to aqueous uptake, biotransformation and elimination of the pesticide, or indistinct biomarker compositions among invertebrates with low and high bifenthrin concentrations. One FA [docosahexaenoic acid (DHA)] and DDX were negatively correlated in salmon, potentially due to a greater uptake of DDX from invertebrates with low DHA or effects of DDX on FA metabolism. Trophic biomarkers may be useful indicators of DDX accumulation and effects in juvenile Chinook Salmon in the Sacramento River Delta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Amweg EL, Weston DP, You J, Lydy MJ (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40:1700–1706. https://doi.org/10.1021/es051407c

    Article  CAS  Google Scholar 

  • Anzalone SE, Fuller NW, Huff Hartz KE, Fulton CA, Whitledge GW, Magnuson JT, Schlenk D, Acuña S, Lydy MJ (2022) Pesticide residues in juvenile Chinook salmon and prey items of the Sacramento River watershed, California: a comparison of riverine and floodplain habitats. Environ Pollut 303:e119102

    Article  Google Scholar 

  • Barnett-Johnson R, Grimes CB, Royer CF, Donohoe CJ (2007) Identifying the contribution of wild and hatchery Chinook salmon (Oncorhynchus tshawytscha) to the ocean fishery using otolith microstructure as natural tags. Can J Fish Aquat Sci 64:1683–1692

    Article  Google Scholar 

  • Bell-Tilcock M, Jeffres CA, Rypel AL, Willmes M, Armstrong RA, Holden P, Moyle PB, Fangue NA, Katz JVE, Sommer TR, Conrad JL, Johnson RC (2021) Biogeochemical processes create distinct isotopic fingerprints to track floodplain rearing of juvenile salmon. PLoS ONE 16:e0257444

    Article  CAS  Google Scholar 

  • Bergstrom E (1989) Effect of natural and artificial diets on seasonal changes in fatty acid composition and total body lipid content of wild and hatchery-reared Atlantic salmon (Salmo salar L.) parr-smolt. Aquaculture 82:205–217

    Article  Google Scholar 

  • Brown LR, Moyle PB (2005) Native fishes of the Sacramento-San Joaquin drainage, California: a history of decline. Am Fish Soc Symp 45:75–98

    Google Scholar 

  • Caldwell RS, Caldarone EM, Rosene BA (1979) Fatty acid composition of phospholipids in thermally acclimating sculpins treated with PCBs. In: Vernberg WB, Thurberg FP, Calabrese A, Vernberg FJ (eds) Marine pollution: functional responses. Academic Press, New York, pp 271–290

    Chapter  Google Scholar 

  • Carr MK, Jardine TD, Doig LE, Jones PD, Bharadwaj L, Tendler B, Chetelat J, Cott P, Lindenschmidt KE (2017) Stable sulfur isotopes identify habitat-specific foraging and mercury exposure in a highly mobile fish community. Sci Total Environ 586:338–346

    Article  CAS  Google Scholar 

  • Catalan J, Toru M, Slotnick B, Murthy M, Greiner RS, Salem N Jr (2002) Cognitive deficits in docosahexaenoic acid-deficient rats. Behav Neurosci 116(6):1022–1103

    Article  CAS  Google Scholar 

  • Corline NJ, Sommer T, Jeffres CA, Katz J (2017) Zooplankton ecology and trophic resources for rearing native fish on an agricultural floodplain in the Yolo Bypass California, USA. Wetl Ecol Manag 25:533–545

    Article  Google Scholar 

  • Croisetière L, Hare L, Tessier A, Cabana G (2009) Sulphur stable isotopes can distinguish trophic dependence on sediments and plankton in boreal lakes. Freshwater Biol 54:1006–1015

    Article  Google Scholar 

  • Czesny S, Rinchard J, Hansen SD, Dettmers JM, Dabrowski K (2011) Fatty acid signatures of Lake Michigan prey fish and invertebrates: among species differences and spatiotemporal variability. Can J Fish Aquat Sci 68:1211–1230

    Article  CAS  Google Scholar 

  • Delong MD, Thorp JH (2006) Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia 147:76–85

    Article  Google Scholar 

  • Descroix A, Bec A, Bourdier G, Sargos D, Sauvanet J, Mission B, Desvilettes C (2010) Fatty acids as biomarkers to indicate main carbon sources of four major invertebrate families in a large river (the Allier, France). Arch Hydrobiol 177:39–55

    Article  CAS  Google Scholar 

  • Ding Y, Harwood AD, Foslund HM, Lydy MJ (2010) Distribution and toxicity of sediment-associated pesticides in urban and agricultural waterways from Illinois. Environ Toxicol Chem 29:149–157

    Article  CAS  Google Scholar 

  • Fan F, Zhang B, Morrill PL, Husain T (2017) Profiling of sulfate-reducing bacteria in an offshore oil reservoir using phospholipid fatty acid (PLFA) biomarkers. Wat Air and Soil Poll 228:1–16

    Article  CAS  Google Scholar 

  • Finlay JC (2001) Stable carbon isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82:1052–1064

    Google Scholar 

  • Fong S, Louie S, Werner I, Davis J, Connon RE (2016) Contaminant effects on California Bay-Delta species and human health. San Franc Estuary and Watershed Sci 14:Article 5.

  • France RL (1995) Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limol Oceanogr 40:1310–1313

    Article  Google Scholar 

  • Fry B, Arnold C (1982) Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia 54:200–204

    Article  Google Scholar 

  • Fuller N, Magnuson JT, Huff Hartz K, Fulton C, Whitledge GW, Acuna S, Schlenk D, Lydy MJ (2021) Effects of dietary cypermethrin exposure on swimming performance and expression of lipid homeostatic genes in livers of juvenile Chinook Salmon Oncorhynchus tshawytscha. Ecotoxicology 30:257–267

    Article  CAS  Google Scholar 

  • Fuller NW, Anzalone SE, Huff Hartz KE, Whitledge GW, Acuna S, Schlenk D, Lydy MJ (2022a) Bioavailability of legacy and current-use pesticides in the Sacramento River watershed: importance of sediment characteristics and extraction techniques. Chemosphere 298:e134174

    Article  Google Scholar 

  • Fuller N, Magnuson JT, Huff Hartz KE, Whitledge GW, Acuna S, McGruer V, Schlenk D, Lydy MJ (2022b) Dietary exposure to environmentally relevant pesticide mixtures impairs swimming performance and lipid homeostatic gene expression in juvenile Chinook Salmon at elevated water temperatures. Environ Poll 314:e120308

    Article  Google Scholar 

  • Gladyshev MI, Emelianova AY, Kalachova GS, Zotina TA, Gaevsky NA, Zhilenkov MD (2000) Gut content analysis of Gammarus lacustris from a Siberian lake using biochemical and biophysical methods. Hydrobiologia 431:155–163

    Article  CAS  Google Scholar 

  • Goertler P, Jones K, Cordell J, Schreier B, Sommer T (2018) Effects of extreme hydrologic regimes on juvenile Chinook salmon prey resources and diet composition in a large river floodplain. Trans Am Fish Soc 147:287–299

    Article  Google Scholar 

  • Goncalves AMM, Rocha CP, Marques JC, Goncalves FJM (2021) Fatty acids as suitable biomarkers to assess pesticide impacts in freshwater biological scales—a review. Ecol Indicators 122:e107299

    Article  Google Scholar 

  • Greer JB, Magnuson JT, Hester K, Giroux M, Pope C, Anderson T, Liu J, Dang V, Denslow ND, Schlenk D (2019) Effects of chlorpyrifos on cholinesterase and serine lipase activities and lipid metabolism in brains of Rainbow Trout (Oncorhynchus mykiss). Toxicol Sci 172:146–154

    Article  CAS  Google Scholar 

  • Hanisch JR, Tonn WM, Paszkowski CA, Scrimgeour GJ (2010) δ13C and δ15N Signatures in muscle and fin tissues: nonlethal sampling methods for stable isotope analysis of salmonids. N Am J Fish Manag 30:1–11

    Article  Google Scholar 

  • Hanson CE, Hyndes GA, Wang SF (2010) Differentiation of benthic marine primary producers using stable isotopes and fatty acids: implications to food web studies. Aquat Botany 93:114–122

    Article  CAS  Google Scholar 

  • Hendrix N, Criss A, Danner E, Greene CM, Imaki H, Pike A, Lindley ST (2014) Life cycle modeling framework for Sacramento River winter run Chinook Salmon. NOAA technical memorandum 530, National Marine Fisheries Service, Southwest Fisheries Science Center, Santa Cruz, CA. https://repository.library.noaa.gov/view/noaa/4738/noaa_4738_DS1.pdf

  • Henery RE, Sommer TR, Goldman CR (2010) Growth and methylmercury accumulation in juvenile Chinook Salmon in the Sacramento River and its floodplain, the Yolo Bypass. Trans Am Fish Soc 139:550–563

    Article  CAS  Google Scholar 

  • Hintzen EP, Lydy MJ, Belden JB (2009) Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas. Environ Poll 157:110–116

    Article  CAS  Google Scholar 

  • Hoke RA, Ankley GT, Kosian PA, Cotter AM, VanderMeiden FM, Blacer M, Phipps GL, West C, Cox JS (1997) Equilibrium partitioning as the basis for an integrated laboratory and field assessment of the impacts of DDT, DDE, and DDD in sediments. Ecotoxicology 6:101–125

    Article  CAS  Google Scholar 

  • Honey K, Baxter R, Hymanson Z, Sommer T, Gingras M, Cadrett P (2004) IEP long-term fish monitoring program element review. California Interagency Ecological Program.

  • Iverson SJ (2009) Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In: Kainz M, Brett M, Arts M (eds) Lipids in aquatic ecosystems. Springer, New York. https://doi.org/10.1007/978-0-387-89366-2_12

    Chapter  Google Scholar 

  • Jardine TD, Kidd KA, Fisk AT (2006) Applications and assumptions of stable isotope analysis in ecotoxicology. Environ Sci Technol 40:7501–7511

    Article  CAS  Google Scholar 

  • Jeffres CA, Opperman JJ, Moyle PB (2008) Ephemeral floodplain habitats provide best growth conditions for juvenile Chinook salmon in a California river. Environ Biol Fishes 83:449–458

    Article  Google Scholar 

  • Jeffres CA, Holmes EJ, Sommer TR, Katz JVE (2020) Detrital food web contributes to aquatic ecosystem productivity and rapid salmon growth in a managed floodplain. PLoS ONE 15:e0216019

    Article  CAS  Google Scholar 

  • Ji C, Tanabe P, Shi Q, Qian L, McGruer V, Magnuson JT, Wang X, Gan J, Gadepalli RS, Rimoldi J, Schlenk D (2021) Stage dependent enantioselective metabolism of bifenthrin in embryos of Zebrafish (Danio rerio) and Japanese Medaka (Oryzias latipes). Environ Sci Technol 55:9087–9096

  • Johnson RC, Weber PK, Wikert JD, Workman ML, MacFarlane RB, Grove MJ, Schmitt AK (2012) Managed metapopulations: do salmon hatchery ‘sources’ lead to in-river ‘sinks’ in conservation? PLoS ONE 7:e28880

    Article  CAS  Google Scholar 

  • Kainz M, Mazumder A (2005) Effect of algal and bacterial diet on methyl mercury concentrations in zooplankton. Environ Sci Technol 39:1666–1672

    Article  CAS  Google Scholar 

  • Kattner G, Fricke HSG (1986) Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J Chrom 361:263–268

    Article  CAS  Google Scholar 

  • Kwong RWM, Yu PKN, Lam PKS, Wang WX (2008) Uptake, elimination, and biotransformation of aqueous and dietary DDT in marine fish. Environ Toxicol Chem 27:2053–2063

    Article  CAS  Google Scholar 

  • Larocque SM, Fisk AT, Johnson TB (2021) Evaluation of muscle lipid extraction and non-lethal fin tissue use for carbon, nitrogen, and sulfur isotope analyses in adult salmonids. Rapid Comm Mass Spectrom 35:e9093

    Article  CAS  Google Scholar 

  • Le Croizier G, Schaal G, Gallon R, Fall M, Le Grand F, Munaron J-M, Rouget M-L, Machu E, Le Loch F, Lae R, Tito De Morais L (2016) Trophic ecology influence on metal bioaccumulation in marine fish: inference from stable isotope and fatty acid analyses. Sci Total Environ 573:83–95

    Article  Google Scholar 

  • Limm MP, Marchetti MP (2009) Juvenile Chinook salmon (Oncorhynchus tshawytscha) growth in off-channel and main-channel habitats on the Sacramento River, CA using otolith increment widths. Environ Biol Fishes 85:141–151

    Article  Google Scholar 

  • Macek KJ, Korn S (1970) Significance of the food chain in DDT accumulation by fish. J Fish Res Board Can 27:1496–1498

    Article  CAS  Google Scholar 

  • Magnuson JT, Giroux M, Cryder Z, Gan J, Schlenk D (2020a) The use of non-targeted metabolomics to assess the toxicity of bifenthrin to juvenile Chinook Salmon (Oncorhynchus tshawytscha). Aquat Toxicol 224:e105518

    Article  Google Scholar 

  • Magnuson JT, Cryder Z, Andrzejczyk NE, Harraka G, Wolf DC, Gan J, Schlenk D (2020b) Metabolomic profiles in the brains of juvenile steelhead (Oncorhynchus mykiss) following bifenthrin treatment. Environ Sci Technol 54:12245–12253. https://doi.org/10.1021/acs.est.0c04847

    Article  CAS  Google Scholar 

  • Magnuson JT, Fuller N, Huff Hartz KE, Anzalone S, Whitledge GW, Acuna S, Lydy MJ, Schlenk D (2022a) Dietary exposure to bifenthrin and fipronil impacts swimming performance in juvenile Chinook salmon (Oncorhynchus tshawytscha). Environ Sci Technol 56:5071–5080

    Article  CAS  Google Scholar 

  • Magnuson JT, Caceres L, Sy N, Ji C, Tanabe P, Gan J, Lydy MJ, Schlenk D (2022b) The use of non-targeted lipidomics and histopathology to characterize the neurotoxicity of bifenthrin to juvenile Rainbow Trout (Oncorhynchus mykiss). Environ Sci Technol 56:11482–11492

    Article  CAS  Google Scholar 

  • Maul JD, Lydy, MJ (2008) Partitioning and matrix-specific toxicity of bifenthrin among sediments and leaf-sourced organic matter. Environ Toxicol Chem 27:945–952

    Article  CAS  Google Scholar 

  • McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390

    Article  CAS  Google Scholar 

  • Michel CJ, Ammann AJ, Lindley ST, Sandstrom PT, Chapman ED, Thomas MJ, Singer GP, Klimley AP, MacFarlane RB (2015) Chinook salmon outmigration survival in wet and dry years in California’s Sacramento River. Can J Fish Aquat Sci 72:1749–1759

    Article  Google Scholar 

  • Pehkonen J, You J, Akkanen J, Kukkonen JVK, Lydy MJ (2010) Influence of black carbon and chemical planarity on bioavailability of sediment-associated contaminants. Environ Toxicol Chem 29:1976–1983

    Article  CAS  Google Scholar 

  • Perga ME, Bec A, Anneville O (2009) Origins of carbon sustaining the growth of whitefish Coregonus lavaretus early larval states in Lake Annecy: insights from fatty acid biomarkers. J Fish Biol 74:2–17

    Article  Google Scholar 

  • Peterson BJ, Howarth RW, Garritt RH (1986) Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow. Ecology 67:865–874

    Article  CAS  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Powell MS, Hardy RW, Flagg TA, Kline PA (2010) Proximate composition and fatty acid differences in hatchery-reared and wild Snake River sockeye salmon overwintering in nursery lakes. N Am J Fish Manag 30:530–537

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org

  • Riar N, Crago J, Jiang W, Maryoung LA, Gan J, Schlenk D (2013) Effects of salinity acclimation on the endocrine disruption and acute toxicity of bifenthrin in freshwater and euryhaline strains of Oncorhynchus mykiss. Environ Toxicol Chem 32:2779–2785

    Article  CAS  Google Scholar 

  • Del Rosario RB, Redler YJ, Newman K, Brandes PL, Sommer T, Reece K, Vincik R (2013) Migration patterns of juvenile winter-run-sized Chinook salmon (Oncorhynchus tshawytscha) through the Sacramento-San Joaquin delta. San Franc Estuary and Watershed Sci 11: March 2013.

  • Rude NP, Trushenski JT, Whitledge GW (2016) Fatty acid profiles are biomarkers of fish habitat use in a river-floodplain ecosystem. Hydrobiologia 773:63–75

    Article  CAS  Google Scholar 

  • Sanseverino AM, Bastviken D, Sundh I, Pickova J, Enrich-Prast A (2013) Correction: methane carbon supports aquatic food webs to the fish level. PLoS ONE. https://doi.org/10.1371/annotation/a1ff8f9e-ebdc-479d-96d3-d01ecdf26b9e

    Article  Google Scholar 

  • Schlenk D (2005) Pesticide biotransformation in fish. In: Mommsen TP, Moon TW (eds) Biochemistry and molecular biology of fishes, vol 6. Elsevier, pp 171–190

    Google Scholar 

  • Sommer TR, Nobriga ML, Harrell WC, Batham W, Kimmerer WJ (2001) Floodplain rearing of juvenile Chinook salmon: evidence of enhanced growth and survival. Can J Fish Aquat Sci 58:325–333

    Article  Google Scholar 

  • Tang W, Wang DI, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D (2018) Pyrethroid pesticide residues in the global environment: an overview. Chemosphere 191:990–1007

    Article  CAS  Google Scholar 

  • Torres-Ruiz M, Wehr JD, Perrone AA (2007) Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. J N Amer Benthol Soc 26:509–522

    Article  Google Scholar 

  • U.S. Environmental Protection Agency [USEPA] (2016) Standard operating procedure for zooplankton analysis. https://www.epa.gov/sites/default/files/2017-01/documents/sop-for-zooplankton-analysis-201607-22pp.pdf

  • U.S. Environmental Protection Agency [USEPA] (2017) Standard operating procedure for zooplankton sample collection and preservation and secchi depth measurement field procedures. Revision 12, February 2017. Great Lakes National Program Office, U.S. Environmental Protection Agency, Chicago, IL. https://www.epa.gov/sites/default/files/2017-01/documents/sop-for-zooplankton-sample-collection-preservation-and-secchi-depth-measurement-field-procedures-201303-7pp.pdf

  • Weber PK, Hutcheon ID, McKeegan KD, Ingram BL (2002) Otolith sulfur isotope method to reconstruct salmon (Oncorhynchus tshawytscha) life history. Can J Fish Aquat Sci 59:587–591

    Article  CAS  Google Scholar 

  • Weston DP, Lydy MJ (2010) Urban and agricultural sources of pyrethroid insecticides of the Sacramento-San Joaquin Delta of California. Environ Sci Technol 44:1833–1840

    Article  CAS  Google Scholar 

  • Weston DP, Holmes RW, You J, Lydy MJ (2005) Aquatic toxicity due to residential use of pyrethroid insecticides. Environ Sci Technol 39:9778–9784

    Article  CAS  Google Scholar 

  • Weston DP, Ding Y, Zhang M, Lydy MJ (2013) Identifying the cause of sediment toxicity in agricultural sediments: the role of pyrethroids and nine seldom-measured hydrophobic pesticides. Chemosphere 90:958–964

    Article  CAS  Google Scholar 

  • Willacker JJ, Eagles-Smith CA, Ackerman JT (2017) Mercury bioaccumulation in estuarine fishes: novel insights from sulfur stable isotopes. Environ Sci Technol 51:2131–2139

    Article  CAS  Google Scholar 

  • Yoshiyama RM, Fisher FW, Moyle PB (1998) Historical abundance and decline of Chinook Salmon in the Central Valley region of California. N Am J Fish Manag 18:487–521

    Article  Google Scholar 

  • You J, Brennan A, Lydy MJ (2009) Bioavailability and biotransformation of sediment-associated pyrethroid insecticides in Lumbriculus variegatus. Chemosphere 75:1477–1482

    Article  CAS  Google Scholar 

  • Young MP, Whitledge GW, Trushenski JT (2016) Fatty acid profiles distinguish channel catfish from three reaches of the lower Kaskaskia River and its floodplain lakes. River Res Appl 32:362–372

    Article  Google Scholar 

  • Zhong H, Dong L, Dong Q, Ke C, Fu J, Wang X, Liu C, Dai L (2012) Quantitative analysis of aberrant fatty acid composition of zebrafish hepatic lipids induced by organochlorine pesticide using stable isotope-coded transmethylation and gas chromatography-mass spectrometry. Anal Bioanal Chem 404:207–216

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the California Department of Water Resources (W. Sacramento office staff), U.S. Fish and Wildlife Service (Lodi office staff) and Victoria McGruer (UC Riverside) for assistance with field collections. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Funding

This research was funded through the California Department of Fish and Wildlife Proposition 1 Restoration Grant Program (#P1896015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Lydy.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 69 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anzalone, S.E., Fuller, N.W., Hartz, K.E.H. et al. The Roles of Diet and Habitat Use in Pesticide Bioaccumulation by Juvenile Chinook Salmon: Insights from Stable Isotopes and Fatty Acid Biomarkers. Arch Environ Contam Toxicol 86, 234–248 (2024). https://doi.org/10.1007/s00244-024-01060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-024-01060-2

Navigation