Skip to main content
Log in

Potentially Toxic Elements’ Accumulation in Relation to Sediment Physicochemical Attributes and Microplastic Content in Zayandeh-Rood River, Iran

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Microplastics (MPs) are an emerging pollutant whose ability to adsorb potentially toxic elements (PTEs) poses a serious threat to aquatic ecosystems, including rivers. In highly developed basins, the abundance of MPs in river sediment is expected to be high, elevating the sedimentary accumulation of PTEs. This hypothesis was tested in the Zayandeh-Rood River, Central Iran, with 21 sediment sampling stations distributed along the entire river stretch. Results of sediment analysis showed significant variations in the abundance and size of MPs, with concentrations ranked as Ba (270.71 mg/kg) > Li (21.29 mg/kg) > Cs (2.50 mg/kg) > Be (1.44 mg/kg) > Sn (1.17 mg/kg) > Mo (1.06 mg/kg) > Ag (0.76 mg/kg), along with sediment physicochemical attributes such as EC, TOC, pH and grain size. MPs were identified in all sediment samples with a mean of 588 items/kg dry weight. Except for Ag, all other PTEs were classified as uncontaminated but exhibited increased enrichment downstream. According to the results of the generalized additive model (maximum R-sq of 0.766), the sedimentary concentration of the majority of PTEs is nonlinearly and positively associated with smaller and more abundant MPs. This study acknowledges that MPs might influence sediment porosity, permeability and structure, thereby directly affecting the settling dynamics of other particles, especially PTEs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Acosta-Coley I, Mendez-Cuadro D, Rodriguez-Cavallo E et al (2019) Trace elements in microplastics in Cartagena: a hotspot for plastic pollution at the Caribbean. Mar Pollut Bull 139:402–411

    Article  CAS  Google Scholar 

  • Aghilinasrollahabadi K, Salehi M, Fujiwara T (2021) Investigate the influence of microplastics weathering on their heavy metals uptake in stormwater. J Hazard Mater 408:124439

    Article  CAS  Google Scholar 

  • Ambade B, Sethi SS, Kurwadkar S et al (2021) Toxicity and health risk assessment of polycyclic aromatic hydrocarbons in surface water, sediments and groundwater vulnerability in Damodar River Basin. Groundw Sustain Dev 13:100553

    Article  Google Scholar 

  • Ashton K, Holmes L, Turner A (2010) Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull 60(11):2050–2055

    Article  CAS  Google Scholar 

  • Behmanesh M, Chamani A, Chavoshi E (2023) Sedimentary abundance and major determinants of river microplastic contamination in the central arid part of Iran. Appl Water Sci 13(12):239

    Article  CAS  Google Scholar 

  • Berger VW, Zhou Y (2014) Kolmogorov–Smirnov test: overview. Wiley statsref: statistics reference online

  • Besley A, Vijver MG, Behrens P, Bosker T (2017) A standardized method for sampling and extraction methods for quantifying microplastics in beach sand. Mar Pollut Bull 114(1):77–83

    Article  CAS  Google Scholar 

  • Bowen H (1979) Environmental chemistry of the elements. Academic Press, New York

    Google Scholar 

  • Buat-Ménard P (1979) Influence de la retombée atmosphérique sur la chimie des métaux en trace dans la matière en suspension de l'Atlantique Nord. Doctoral dissertation.

  • Burns EE, Boxall AB (2018) Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps. Environ Toxicol Chem 37(11):2776–2796

    Article  CAS  Google Scholar 

  • Chamani A (2020) Evaluation of lead and cadmium contamination in the Zayandeh Rud River. In: Mohajeri S, Horlemann L, Besalatpour AA, Raber W (eds) Standing up to climate change: creating prospects for a sustainable future in Iran. Springer, New York, pp 225–238

    Chapter  Google Scholar 

  • Chen X-j, J-j Ma, R-l Yu et al (2022) Bioaccessibility of microplastic-associated heavy metals using an in vitro digestion model and its implications for human health risk assessment.Environ Sci Pollut R 29(51):76983–76991.

  • Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62(12):2588–2597

    Article  CAS  Google Scholar 

  • da Costa AAP, Malafaia G (2021) Microplastic ingestion induces behavioral disorders in mice: a preliminary study on the trophic transfer effects via tadpoles and fish. J Hazard Mater 401:123263

    Article  Google Scholar 

  • Dalu T, Banda T, Mutshekwa T et al (2021) Effects of urbanisation and a wastewater treatment plant on microplastic densities along a subtropical river system. Environ Sci Pollut R 28:36102–36111

    Article  CAS  Google Scholar 

  • Foshtomi MY, Oryan S, Taheri M et al (2019) Composition and abundance of microplastics in surface sediments and their interaction with sedimentary heavy metals, PAHs and TPH (total petroleum hydrocarbons). Mar Pollut Bull 149:110655

    Article  Google Scholar 

  • Franzellitti S, Canesi L, Auguste M et al (2019) Microplastic exposure and effects in aquatic organisms: a physiological perspective. Environ Toxicol Phar 68:37–51

    Article  CAS  Google Scholar 

  • Gao F, Li J, Sun C et al (2019) Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Mar Pollut Bull 144:61–67

    Article  CAS  Google Scholar 

  • Godoy V, Blázquez G, Calero M et al (2019) The potential of microplastics as carriers of metals. Environ Pollut 255:113363

    Article  CAS  Google Scholar 

  • Hafeez F, Zafar N, Nazir R et al (2019) Assessment of flood-induced changes in soil heavy metal and nutrient status in Rajanpur, Pakistan. Environ Monit Assess 191:1–11

    Article  CAS  Google Scholar 

  • Herath A, Datta DK, Bonyadinejad G, Salehi M (2023) Partitioning of heavy metals in sediments and microplastics from stormwater runoff. Chemosphere 332:138844

    Article  CAS  Google Scholar 

  • Hu B, Lin J, He J et al (2023) Sediment and interstitial water heavy metals in mangrove restoration wetland and preliminary exploration of microplastics in interstitial water. CATENA 221:106764

    Article  CAS  Google Scholar 

  • Jiang C, Yin L, Li Z et al (2019) Microplastic pollution in the rivers of the Tibet Plateau. Environ Pollut 249:91–98

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2000) Trace elements in soils and plants. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kalčíková G, Skalar T, Marolt G, Kokalj AJ (2020) An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Res 175:115644

    Article  Google Scholar 

  • Kalita S, Sarma HP, Devi A (2019) Sediment characterisation and spatial distribution of heavy metals in the sediment of a tropical freshwater wetland of Indo-Burmese province. Environ Pollut 250:969–980

    Article  CAS  Google Scholar 

  • Karimian S, Chamani A, Shams M (2020) Evaluation of heavy metal pollution in the Zayandeh-Rud River as the only permanent river in the central plateau of Iran. Environ Monit Assess 192(5):1–13

    Article  Google Scholar 

  • Kataoka T, Nihei Y, Kudou K, Hinata H (2019) Assessment of the sources and inflow processes of microplastics in the river environments of Japan. Environ Pollut 244:958–965

    Article  CAS  Google Scholar 

  • Khalid N, Aqeel M, Noman A et al (2021) Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environ Pollut 290:118104

    Article  CAS  Google Scholar 

  • Koutnik VS, Leonard J, Alkidim S et al (2021) Distribution of microplastics in soil and freshwater environments: global analysis and framework for transport modeling. Environ Pollut 274:116552

    Article  CAS  Google Scholar 

  • Li P, Wang X, Su M et al (2021) Characteristics of plastic pollution in the environment: a review. B Environ Contam Tox 107:577–584

    Article  CAS  Google Scholar 

  • Li Z, Li X, Wang S et al (2023) Adsorption and desorption of heavy metals at water sediment interface based on bayesian model. J Environ Manag 329:117035

    Article  CAS  Google Scholar 

  • Liu S, Huang J, Zhang W et al (2022) Microplastics as a vehicle of heavy metals in aquatic environments: a review of adsorption factors, mechanisms, and biological effects. J Environ Manag 302:113995

    Article  CAS  Google Scholar 

  • Liu S, Shi J, Wang J et al (2021) Interactions between microplastics and heavy metals in aquatic environments: a review. Front Microbiol 12:652520

    Article  Google Scholar 

  • Mao Y, Li H, Gu W et al (2020) Distribution and characteristics of microplastics in the Yulin River, China: role of environmental and spatial factors. Environ Pollut 265:115033

    Article  CAS  Google Scholar 

  • Martins A, da Silva DD, Silva R et al (2023) Warmer water, high light intensity, lithium and microplastics: Dangerous environmental combinations to zooplankton and Global Health? Sci Total Environ 854:158649

    Article  CAS  Google Scholar 

  • Masura J, Baker J, Foster G, Arthur C (2015) Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48; National Oceanic and Atmospheric Administration, Siiver Spring, 31 p

  • Mei J, Jia J, Bi C et al (2022) Effects of human enclosure and farming activities on heavy metals in sediments/soils of the coastal reclamation areas in the Yangtze Estuary. J Soils Sediments 22(9):2435–2447

    Article  CAS  Google Scholar 

  • Miao X, Song M, Xu G et al (2022) The accumulation and transformation of heavy metals in sediments of Liujiang River Basin in Southern China and their threatening on water security. Int J Environ Res Public Health 19(3):1619

    Article  CAS  Google Scholar 

  • Mohiuddin K, Zakir H, Otomo K et al (2010) Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. Int J Environ Sci Technol 7:17–28

    Article  CAS  Google Scholar 

  • Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2:108–118

    Google Scholar 

  • Naqash N, Prakash S, Kapoor D, Singh R (2020) Interaction of freshwater microplastics with biota and heavy metals: a review. Environ Chem Lett 18(6):1813–1824

    Article  CAS  Google Scholar 

  • Ostle C, Thompson RC, Broughton D et al (2019) The rise in ocean plastics evidenced from a 60-year time series. Nat Commun 10(1):1622

    Article  Google Scholar 

  • Perumpully SJ, Kumar RP, Gautam S et al (2023) An inclusive trend study of evaluation and scientometric analysis of microplastics. Phys Chem Earth, Parts a/b/c 132:103455

    Article  Google Scholar 

  • Rai PK, Sonne C, Brown RJ et al (2022) Adsorption of environmental contaminants on micro-and nano-scale plastic polymers and the influence of weathering processes on their adsorptive attributes. J Hazard Mater 427:127903

    Article  CAS  Google Scholar 

  • Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. J R Stat Soc: Ser C (appl Stat) 54(3):507–554

    Article  Google Scholar 

  • Santos RG, Machovsky-Capuska GE, Andrades R (2021) Plastic ingestion as an evolutionary trap: toward a holistic understanding. Science 373(6550):56–60

    Article  CAS  Google Scholar 

  • Sappa G, Barbieri M, Andrei F (2020) Assessment of trace elements natural enrichment in topsoil by some Italian case studies. SN Appl Sci 2(8):1409

    Article  CAS  Google Scholar 

  • Shahradnia H, Chamani A, Zamanpoore M, Jalalizand A (2021) Heavy metal pollution in surface sediments of Ghareh-Aghaj River, one of the longest perennial rivers in Iran. Environ Earth Sci 80:1–12

    Article  Google Scholar 

  • Sharifinejad A, Zahraie B, Majed V et al (2020) Economic analysis of Water-Food-Energy Nexus in Gavkhuni basin in Iran. J Hydro-Environ Res 31:14–25

    Article  Google Scholar 

  • Shirazi A, Karimi HM (2015) Measurement and evaluation of heavy metals (Ag, Cd, Cu, Fe) pollution in sediments of Tashklake (Fars, Iran). J Biodivers Environ Sci 6(6):448–454

    Google Scholar 

  • Shwetir Marwah R, Chamani A (2023) Pollution and environmental risk assessment of potentially toxic elements in surface sediments of Zayandeh-Rood River, Isfahan Province, Iran. Anthropog Pollut 7(1)

  • Ta A, Babel TS (2020) Microplastic contamination on the lower Chao Phraya: abundance, characteristic and interaction with heavy metals. Chemosphere 257:127234

    Article  CAS  Google Scholar 

  • Tomlinson D, Wilson J, Harris C, Jeffrey D (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol Meeresunters 33:566–575

    Article  Google Scholar 

  • Tosetto L, Williamson JE, Brown C (2017) Trophic transfer of microplastics does not affect fish personality. Anim Behav 123:159–167

    Article  Google Scholar 

  • Vedolin MC, Teophilo C, Turra A, Figueira RCL (2018) Spatial variability in the concentrations of metals in beached microplastics. Mar Pollut Bull 129(2):487–493

    Article  CAS  Google Scholar 

  • Verla AW, Enyoh CE, Verla EN, Nwarnorh KO (2019) Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Appl Sci 1(11):1–30

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  • Wang ZJ, Kale A, Nori H et al (2021) Game changer: editing generalized additive models with interactive visualization. arXiv:2112.03245

  • Wood S, Wood MS (2015) Package ‘mgcv.’ R Package Version 1(29):729

    Google Scholar 

  • Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc 99(467):673–686

    Article  Google Scholar 

  • Yuan W, Christie-Oleza JA, Xu EG et al (2022) Environmental fate of microplastics in the world’s third-largest river: basin-wide investigation and microplastic community analysis. Water Res 210:118002

    Article  CAS  Google Scholar 

  • Zhang S, Wang J, Liu X et al (2019) Microplastics in the environment: a review of analytical methods, distribution, and biological effects. TrAC-Trends Anal Chem 111:62–72

    Article  CAS  Google Scholar 

  • Zhiyuan W, Dengfeng W, Huiping Z, Zhiping Q (2011) Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index. Procedia Environ Sci 10:1946–1952

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MB presented conceptualization, methodology and software. AC provided data curation and writing—original draft preparation. EC prepared software and validation.

Corresponding author

Correspondence to Atefeh Chamani.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behmanesh, M., Chamani, A. & Chavoshi, E. Potentially Toxic Elements’ Accumulation in Relation to Sediment Physicochemical Attributes and Microplastic Content in Zayandeh-Rood River, Iran. Arch Environ Contam Toxicol 86, 274–287 (2024). https://doi.org/10.1007/s00244-024-01059-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-024-01059-9

Navigation