Skip to main content
Log in

Evaluation of heavy metal pollution in the Zayandeh-Rud River as the only permanent river in the central plateau of Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Zayandeh-Rud River is the only permanent river in the central plateau of Iran. This river has been subject to an extensive discharge of wastewater and effluents from several point and nonpoint pollution sources. Accordingly, sediment quality of Zayandeh-Rud River in Varzaneh region, were studied. Algae and the sediment were sampled through 3 replications at 6 stations in the downstream after crossing through the Isfahan city and reaching Gavkhuni international wetland. Chlorophyll content and As, Pb, and Cd concentrations were measured in each sample Cladophora sp. and Oscillatoria sp. were identified using standard identification keys. The mean concentrations of metals in all stations exceeded background levels. Mean concentration of arsenic (162.9 mg/kg) in the sediment is about 31 times more than the ISQG standard (5.9 mg/kg) and considerably higher than the similar studies in Iran and other regions of the world. The mean concentration of As in algae samples is higher than the most polluted areas of the world. The mean concentration of Pb in the sediment (19.69 mg/kg) is lower than the ISQGs standard (35 mg/kg) and most of the studied river in north of Iran such as Chalous, Baboul-Rud, Gorgan-Rud (North), Khiav (North West), and Anzali wetland. The mean concentration of Cd in the sediment (2.11 mg/kg) is significantly higher than ISQG standard (0.6 mg/kg and some north highly polluted wetlands of Iran such as Anzali. There is a significant positive correlation between the mean concentrations of As and Pb in the sediment and Cladophora sp. tissue, and a negative one between the mean concentration of Pb in the sediment and chlorophyll b/a. There are significant negative correlations between the mean concentration of As in the sediment and chlorophyll a, and the total chlorophyll concentration in Oscillatoria sp. The results of Muller index indicate that the concentrations of Pb, Cd, and As in all stations occur in the Unpolluted, Moderate/Heavy, and Heavy/Extreme groups, respectively. Degree of contamination and modified degree of contamination show very high degree of pollution in the studied area. RI in all the stations showed very high ecological risk. The bioaccumulation factor for all metals in both algae is less than one. So, these two species may not be described as heavy metal accumulators. This study is an alarm for the Zayandeh-Rud River as the most important freshwater source for the Iranian Plateau.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Interim freshwater sediment quality guideline

  2. Probable Effect Level

References

  • Abrahim. (2005). Holocene sediments of Tamaki Estuary: Characterisation and impact of recent human activity on an urban estuary in Auckland, New Zealand. Thesis (PhD--Geology), University of Auckland, 2005.

  • Abrahim, G., & Parker, R. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238.

    CAS  Google Scholar 

  • Alahabadi, A., & Malvandi, H. (2018). Contamination and ecological risk assessment of heavy metals and metalloids in surface sediments of the Tajan River, Iran. Marine Pollution Bulletin, 133, 741–749.

    CAS  Google Scholar 

  • Alahverdi, M., & Savabieasfahani, M. (2012). Seaweed and chlorophyll as biomarkers of metals in the Persian Gulf, Iran. Bulletin of Environmental Contamination and Toxicology, 89(3), 501–506.

    CAS  Google Scholar 

  • Ali, M. M., Ali, M. L., Islam, M., & Rahman, M. (2018). Assessment of toxic metals in water and sediment of Pasur River in Bangladesh. Water Science and Technology, 77(5), 1418–1430.

    CAS  Google Scholar 

  • Anderson, V. L., & McLean, R. A. (1974). Design of experiments: a realistic approach: Marcel Dekker Inc., New York. 418 p. 

  • APHA. (2005). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association (APHA).

    Google Scholar 

  • Arnon, D. I. (1949). Copper enzymes in isolated chloropolates. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    CAS  Google Scholar 

  • Azimi, A., Riyahi Bakhtiari, A., & Parsayi, M. (2019). Distribution and source identification of lead in surface sediments of rivers Chaloos, Babolrood and Gorganrood in south of Caspian Sea. Journal of Environmental Science Studies, 4(1), 1021–1028.

    Google Scholar 

  • Babaei, H., Araghinejad, S., & Hoorfar, A. (2013). Developing a new method for spatial assessment of drought vulnerability (case study: Z ayandeh-rood river basin in I ran). Water Environment Journal, 27(1), 50–57.

    Google Scholar 

  • Bahador, M., Moradi, A., & Naji, A. (2017). Assessment of heavy metals contamination in surface sediments of Shoor River estuary, east of Bandar Abbas by using different indexes. Journal of Marine Science and Technology, 16(3), 56–71.

    Google Scholar 

  • Barkett, M. O., & Akün, E. (2018). Heavy metal contents of contaminated soils and ecological risk assessment in abandoned copper mine harbor in Yedidalga, northern Cyprus. Environmental Earth Sciences, 77(10), 378.

    Google Scholar 

  • Barla, A., Shrivastava, A., Majumdar, A., Upadhyay, M. K., & Bose, S. (2017). Heavy metal dispersion in water saturated and water unsaturated soil of Bengal delta region, India. Chemosphere, 168, 807–816.

    CAS  Google Scholar 

  • Bingöl, D., Ay, Ü., Karayünlü Bozbaş, S., & Uzgören, N. (2013). Chemometric evaluation of the heavy metals distribution in waters from the Dilovası region in Kocaeli, Turkey. Marine Pollution Bulletin, 68(1), 134–139.

    Google Scholar 

  • CCME. (2001). Canadian sediment quality guidelines for the protection of aquatic life. CCME: Canadian Environmental Quality Guidelines.

    Google Scholar 

  • Chetty, S., & Pillay, L. (2019). Assessing the influence of human activities on river health: A case for two south African rivers with differing pollutant sources. Environmental Monitoring and Assessment, 191(3), 168.

    Google Scholar 

  • Dadolahi-Sohrab, A., Nikvarz, A., Nabavi, S., Safahyeh, A., & Ketal-Mohseni, M. (2011). Environmental monitoring of heavy metals in seaweed and associated sediment from the strait of Hormuz, IR Iran. World Journal of Fish and Marine Sciences, 3(6), 576–589.

    CAS  Google Scholar 

  • Daka, E. R. (2005). Heavy metal concentrations in Littorina saxatilis and Enteromorpha intestinalis from Manx estuaries. Marine Pollution Bulletin, 50(11), 1452–1456.

    Google Scholar 

  • Dan’Azumi, S., & Bichi, M. (2010). Industrial pollution and heavy metals profile of Challawa River in Kano, Nigeria. Journal of Applied Sciences in Environmental Sanitation, 5(1), 23–29.

    Google Scholar 

  • Darko, G., Dodd, M., Nkansah, M. A., Aduse-Poku, Y., Ansah, E., Wemegah, D. D., & Borquaye, L. S. (2017). Distribution and ecological risks of toxic metals in the topsoils in the Kumasi metropolis, Ghana. Cogent Environmental Science, 3(1), 1354965.

    Google Scholar 

  • Eftekhari, M. H., Mazloomi, S. M., Akbarzadeh, M., & Ranjbar, M. (2014). Content of toxic and essential metals in recrystallized and washed table salt in shiraz, Iran. Journal of Environmental Health Science and Engineering, 12(1), 10.

    Google Scholar 

  • Ergül, H. A., Varol, T., & Ay, Ü. (2013). Investigation of heavy metal pollutants at various depths in the Gulf of Izmit. Marine Pollution Bulletin, 73(1), 389–393.

    Google Scholar 

  • Farsani, M. N., Haghparast, R. J., Naserabad, S. S., Moghadas, F., Bagheri, T., & Gerami, M. H. (2019). Seasonal heavy metal monitoring of water, sediment and common carp (Cyprinus carpio) in Aras dam Lake of Iran. International Journal of Aquatic Biology, 7(3), 123–131.

    Google Scholar 

  • García-Rico, L., Meza-Figueroa, D., Gandolfi, A. J., del Rivero, C. I., Martínez-Cinco, M. A., & Meza-Montenegro, M. M. (2019). Health risk assessment and urinary excretion of children exposed to arsenic through drinking water and soils in Sonora, Mexico. Biological Trace Element Research, 187(1), 9–21.

    Google Scholar 

  • Haghshenas, V., Kafaei, R., Tahmasebi, R., Dobaradaran, S., Hashemi, S., Sahebi, S., ... & Ramavandi, B. (2020). Potential of green/brown algae for monitoring of metal (loid) s pollution in the coastal seawater and sediments of the Persian Gulf: ecological and health risk assessment. Environmental Science and Pollution Research, 27(7), 7463–7475.

  • Hajian, N. M., & Rahsepar, A. R. (2010). Investigation of effect of city of Isfahan and effluent from Isfahan wastewater treatment plant on some of Zayandeh rood river water quality parameters. Health System Research, 6, 821–828.

    Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Google Scholar 

  • Hamidian, A. H., Zareh, M., Poorbagher, H., Vaziri, L., & Ashrafi, S. (2016). Heavy metal bioaccumulation in sediment, common reed, algae, and blood worm from the Shoor river, Iran. Toxicology and Industrial Health, 32(3), 398–409.

    CAS  Google Scholar 

  • He, Z., Li, F., Dominech, S., Wen, X., & Yang, S. (2019). Heavy metals of surface sediments in the Changjiang (Yangtze River) estuary: Distribution, speciation and environmental risks. Journal of Geochemical Exploration, 198, 18–28.

    CAS  Google Scholar 

  • Hrbek, T., Keivany, Y., & Coad, B. W. (2006). New species of Aphanius (Teleostei, Cyprinodontidae) from Isfahan Province of Iran and a reanalysis of other Iranian species. Copeia, 2006(2), 244–255.

    Google Scholar 

  • Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291.

    CAS  Google Scholar 

  • Jafarabadi, A. R., Bakhtiyari, A. R., Toosi, A. S., & Jadot, C. (2017). Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran. Chemosphere, 185, 1090–1111.

    Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants: CRC press. Taylor & Francis Group., New York. 534 p. 

  • Kaewtubtim, P., Meeinkuirt, W., Seepom, S., & Pichtel, J. (2016). Heavy metal phytoremediation potential of plant species in a mangrove ecosystem in Pattani Bay, Thailand. Applied Ecology and Environmental Research, 14(1), 367–382.

    Google Scholar 

  • Kelepertsis, A., Alexakis, D., & Kita, I. (2001). Environmental geochemistry of soils and waters of Susaki area, Korinthos, Greece. Environmental Geochemistry and Health, 23(2), 117–135.

    CAS  Google Scholar 

  • Keser, G., Topak, Y., & Sevgiler, Y. (2020). Concentrations of some heavy metal and macroelements in sediment, water, macrophyte species, and leech (Hirudo sulukii n. sp.) from the Kara Lake, Adiyaman, Turkey. Environmental Monitoring and Assessment, 192(2), 75.

    CAS  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420.

    CAS  Google Scholar 

  • Lai, T. M., Lee, W., Hur, J., Kim, Y., Huh, I.-A., Shin, H.-S., et al. (2013). Influence of sediment grain size and land use on the distributions of heavy metals in sediments of the Han River basin in Korea and the assessment of anthropogenic pollution. Water, Air, & Soil Pollution, 224(7), 1609.

    Google Scholar 

  • Lozano, G., Hardisson, A., Gutiérrez, A. J., & Lafuente, A. (2003). Lead and cadmium levels in coastal benthic algae (seaweeds) of Tenerife, Canary Islands. Environment International, 28(7), 627–631.

    CAS  Google Scholar 

  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579.

    CAS  Google Scholar 

  • Malvandi, H. (2017). Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran. Marine Pollution Bulletin, 117(1–2), 547–553.

    CAS  Google Scholar 

  • Marcogliese, D. J., Blaise, C., Cyr, D., De Lafontaine, Y., Fournier, M., Gagné, F., et al. (2015). Effects of a major municipal effluent on the St. Lawrence River: A case study. Ambio, 44(4), 257–274.

    Google Scholar 

  • Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River basin, Colombia. Environmental Research, 154, 380–388.

    CAS  Google Scholar 

  • Mollazadeh, N., Moattar, F., Karbassi, A., & Khorasani, N. (2013). Distribution of metals, chemical partitioning, pollution and origins in riverbed sediment. World Applied Sciences Journal, 21(5), 674–680.

    CAS  Google Scholar 

  • Mortazavi, S., & Saberinasab, F. (2017). Heavy metals assessment of surface sediments in Mighan wetland using the sediment quality index. ECOPERSIA, 5(2), 1761–1770.

    Google Scholar 

  • Mortazavi, S., Hatami-Manesh, M., & Joudaki, F. (2019). Evaluation of toxicity and ecological risk assessment of heavy metals in surface sediments of Sezar River, Lorestan Province. Iranian Journal of Health and Environment, 11(4), 487–504.

    Google Scholar 

  • Mousavi, S. P., Mokhtari, M. A. A., Khosravi, Y., Rafiee, A., & Hoseinzade, R. (2018). Investigation of environmental pollution in stream sediments for heavy metals at Zarshuran- Aghdarreh area (north of Takab, Iran). Journal of Water and Soil Science, 22(2), 127–141. https://doi.org/10.29252/jstnar.22.2.127.

    Article  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108–118. 

    Google Scholar 

  • Nabinejad, A. (2018). Aquatic Birds' Serology in Zayndeh Rood River for NDV and AIV. Iranian Journal of Allergy, Asthma & Immunology, 17, 201–202. 

  • Naifar, I., Pereira, F., Zmemla, R., Bouaziz, M., Elleuch, B., & Garcia, D. (2018). Spatial distribution and contamination assessment of heavy metals in marine sediments of the southern coast of Sfax, Gabes gulf, Tunisia. Marine Pollution Bulletin, 131, 53–62.

    CAS  Google Scholar 

  • Nezat, C. A., Hatch, S. A., & Uecker, T. (2017). Heavy metal content in urban residential and park soils: A case study in Spokane, Washington, USA. Applied Geochemistry, 78, 186–193.

    CAS  Google Scholar 

  • Noori, R., Sabahi, M. S., Karbassi, A. R., Baghvand, A., & Zadeh, H. T. (2010). Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination, 260(1–3), 129–136.

    CAS  Google Scholar 

  • Nourouzi, M. M., Chamani, A., Shirani, M., Malekpouri, P., & Chuah, A. L. (2018). Effect of cd and Pb pollutions on physiological growth: Wavelet neural network (WNN) as a new approach on age determination of Coenobita scaevola. Bulletin of Environmental Contamination and Toxicology, 101(3), 6–325.

    Google Scholar 

  • Pan, C.-G., Peng, F.-J., Shi, W.-J., Hu, L.-X., Wei, X.-D., & Ying, G.-G. (2018). Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii. Ecotoxicology and Environmental Safety, 148, 393–401.

    CAS  Google Scholar 

  • Prasad, M., Malec, P., Waloszek, A., Bojko, M., & Strzałka, K. (2001). Physiological responses of Lemna trisulca L.(duckweed) to cadmium and copper bioaccumulation. Plant Science, 161(5), 881–889.

    CAS  Google Scholar 

  • Prescott, G. W. (1984). How know the fresh water algae. WMC Brown Company, Dubuque, Lowa.

    Google Scholar 

  • Prosi, F. (1981). Heavy metals in aquatic organisms. Metal pollution in the aquatic environment. Springer, Berlin, Heidelberg. 271–323. 

    Google Scholar 

  • Punshon, T., Jackson, B. P., Meharg, A. A., Warczack, T., Scheckel, K., & Guerinot, M. L. (2017). Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Science of the Total Environment, 581–582, 209–220.

    Google Scholar 

  • Qiu, J., Liu, J., Li, M., Wang, S., Bai, W., & Zhang, D. (2018). Assessment of heavy metal contamination in surface sediments from the nearshore zone, southern Jiangsu Province, China. Marine Pollution Bulletin, 133, 281–288.

    CAS  Google Scholar 

  • Rahimi, S., & Mortazavi, S. (2019). Role of Phragmites Australis for biomonitoring and phytoremediation of heavy metals pollution in Badavar River, Lorestan Province (Iran). Archives of Hygiene Sciences, 8(2), 71–79.

    CAS  Google Scholar 

  • Ralph, P., & Burchett, M. (1998). Photosynthetic response of Halophila ovalis to heavy metal stress. Environmental Pollution, 103(1), 91–101.

    CAS  Google Scholar 

  • Renieri, E. A., Safenkova, I. V., Alegakis, A. Κ., Slutskaya, E. S., Kokaraki, V., Kentouri, M., & Tsatsakis, A. M. (2019). Cadmium, lead and mercury in muscle tissue of gilthead seabream and seabass: Risk evaluation for consumers. Food and Chemical Toxicology, 124, 439–449.

    CAS  Google Scholar 

  • Safavi, H. R., Esfahani, M. K., & Zamani, A. R. (2014). Integrated index for assessment of vulnerability to drought, case study: Zayandehrood River basin, Iran. Water Resources Management, 28(6), 1671–1688.

    Google Scholar 

  • Salam, M. A., Paul, S. C., Shaari, F. I., Rak, A. E., Ahmad, R. B., & Kadir, W. R. (2019). Geostatistical distribution and contamination status of heavy metals in the sediment of Perak River, Malaysia. Hydrology, 6(2), 30.

    Google Scholar 

  • Sanayei, Y., Ismail, N., & Talebi, S. (2009). Determination of heavy metals in Zayandeh rood river, Isfahan-Iran. World Applied Sciences Journal, 6(9), 1209–1214.

    CAS  Google Scholar 

  • Sasmaz, M., & Sasmaz, A. (2017). The accumulation of strontium by native plants grown on Gumuskoy mining soils. Journal of Geochemical Exploration, 181, 236–242.

    CAS  Google Scholar 

  • Sayadi, M., & Sayyed, M. (2011). Comparative assessment of baseline concentration of the heavy metals in the soils of Tehran (Iran) with the comprisable reference data. Environmental Earth Sciences, 63(6), 1179–1188.

    CAS  Google Scholar 

  • Shakeri, A., Sharifi Fard, M., Mehrabi, B., & Rastegari Mehr, M. (2020). Occurrence, origin and health risk of arsenic and potentially toxic elements (PTEs) in sediments and fish tissues from the geothermal area of the Khiav River, Ardebil Province (NW Iran). Journal of Geochemical Exploration, 208, 106347.

    CAS  Google Scholar 

  • Shariati, S., Pourbabaee, A., & Alikhani, H. (2019). Investigation of heavy metal contamination in the surface sediments of Anzali wetland in north of Iran. Pollution, 5(1), 211–224.

    CAS  Google Scholar 

  • Sharifinia, M., Taherizadeh, M., Namin, J. I., & Kamrani, E. (2018). Ecological risk assessment of trace metals in the surface sediments of the Persian Gulf and Gulf of Oman: Evidence from subtropical estuaries of the Iranian coastal waters. Chemosphere, 191, 485–493.

    CAS  Google Scholar 

  • Soltani, Z., Baygloo, R. S., & Mah, M. C. (2009). Conservation of international ecotourism attractions (case study: Gavkhuni Swamp in Iran). Journal of Environmental Research And Development, 4(2), 594–600.

  • Soylak, M., Peker, D. S. K., & Turkoglu, O. (2008). Heavy metal contents of refined and unrefined table salts from Turkey, Egypt and Greece. Environmental Monitoring and Assessment, 143(1–3), 267–272.

    CAS  Google Scholar 

  • Talbi, H., & Kachi, S. (2019). Evaluation of heavy metal contamination in sediments of the Seybouse River, Guelma–Annaba, Algeria. Journal of Water and Land Development, 40(1), 81–86.

    CAS  Google Scholar 

  • Tang, W., Ao, L., Zhang, H., & Shan, B. (2014). Accumulation and risk of heavy metals in relation to agricultural intensification in the river sediments of agricultural regions. Environmental Earth Sciences, 71(9), 3945–3951.

    CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265.

    Google Scholar 

  • Thode, H. C. (2002). Testing for normality. Vol. 164. CRC press.

  • Van Belle, G., Fisher, L. D., Heagerty, P. J., & Lumley, T. (2004). Biostatistics: A methodology for the health sciences (Vol. 519). John Wiley & Sons.

  • Van Geest, J. L. (2010). Bioaccumulation of sediment-associated contaminants in freshwater organisms: Development and standardization of a laboratory method (Doctoral dissertation). The University of Guelph.

  • Whitford, L. A., & Schumacher, G. J. (1984). A manual of fresh- water algae. New York: Sparks Press.

    Google Scholar 

  • Xue, S., Shi, L., Wu, C., Wu, H., Qin, Y., Pan, W., Hartley, W., & Cui, M. (2017). Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines. Environmental Research, 156, 23–30.

    CAS  Google Scholar 

  • Yousefi, Z., Zafarzadeh, A., Mohammadpour Tahamtan, R., Shokrzadeh, M., Babanezhad arimi, E., Fouladian, A., & Khair Abadi, V. (2019). Contamination assessment and zoning of heavy Metalsin water and sediment of Alagol wetland, Iran 2017. Journal of Mazandaran University of Medical Sciences, 29(177), 180–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atefeh Chamani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimian, S., Chamani, A. & Shams, M. Evaluation of heavy metal pollution in the Zayandeh-Rud River as the only permanent river in the central plateau of Iran. Environ Monit Assess 192, 316 (2020). https://doi.org/10.1007/s10661-020-8183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8183-8

Keywords

Navigation