Skip to main content

Advertisement

Log in

Sensitivity of Freshwater Australian Bass (Macquaria novemaculeata) and Silver Perch (Bidyanus bidyanus) to Waterborne Antimony: Exposure–Dose–Response Characteristics and Ion Homeostasis

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

We conducted acute toxicity studies using semi-static protocols to examine the lethal responses of Australian bass and silver perch exposed to antimony (Sb) oxidation states in Sb(III) (10.5–30.5 mg L−1) and Sb(V) (95.9–258.7 mg L−1). Bioavailability and the effects of Sb on body ion regulation (Na, Ca, Mg, and K) were also investigated. Antimony species-specific effects were observed with exposure to both Sb oxidation states. Median lethal concentrations (LC50s) for Sb(III) were 13.6 and 18 mg L−1 for Australian bass and silver perch, respectively, and the LC50 for Sb(V) in Australian bass was 165.3 mg L−1. The LC50 could not be calculated for silver perch exposed to Sb(V) as the maximum exposure concentrations produced 40% mortality but a larger-than value of > 258.7 mg L−1 was estimated. Relative median potency values derived from the LC50s were 0.1 Sb(III) and 12.2 and 16.6 Sb(V) for Australian bass and silver perch, respectively, demonstrating greater toxicity of Sb(III) to both fish species. Antimony uptake in fish was observed. Median critical body residue (CBR50) values of 77.7 and 26.6 mg kg−1 for Sb(III) were estimated for Australian bass and silver perch, respectively, and 628.1 mg kg−1 for Sb(V) in Australian bass. Bioconcentration factors (BCFs) for both Sb(III) and Sb(V) did not change with exposure but the greater BCFs for fish exposed to Sb(III) indicate that it is more bioavailable than Sb(V) in acute exposure. No effects on whole-body Na, Ca, Mg, or K ions were observed with fish exposure to either Sb species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams WJ, Blust R, Borgmann U, Brix KV, DeForest DK, Green AS, Meyer JS, McGeer JC, Paquin PR, Rainbow PS, Wood CM (2011) Utility of tissue residues for predicting effects of metals on aquatic organisms. Integr Environ Assess Manag 7:75–98. https://doi.org/10.1002/ieam.108

    Article  CAS  Google Scholar 

  • Allen GR (1989) Freshwater fishes of Australia. Publications, T.F.H

    Google Scholar 

  • Allen GR, Midgley SH, Allen M (2002) Field guide to the freshwater fishes of Australia. Western Australian Museum

  • Anonymous (2012) Antimony and its inorganic compounds (inhalable fraction) [MAK Value Documentation, 2007], The MAK-Collection for Occupational Health and Safety. Wiley-VCH Verlag GmbH & Co. KGaA

  • Appelgate VC, Howell JH, Hall AE, Smith MA (1957) Toxicity of 4,346 chemicals to larval lampreys and fishes. Special Scientific Report- Fisheries, U.S. Fish and Wildlife Service

  • Ashley PM, Graham BP, Tighe MK, Wolfenden BJ (2007) Antimony and arsenic dispersion in the Macleay River catchment, New South Wales: a study of the environmental geochemical consequences. Aust J Earth Sci 54:83–103. https://doi.org/10.1080/08120090600981467

    Article  CAS  Google Scholar 

  • Barron MG, Anderson MJ, Lipton J, Dixon DG (1997) Evaluation of critical body residue QSARs for predicting organic chemical toxicity to aquatic organisms. SAR QSAR Environ Res 6:47–62. https://doi.org/10.1080/10629369708031724

    Article  CAS  Google Scholar 

  • TAI Environmental Sciences Inc. (1990) Results of acute toxicity testing of antimony trichloride using the freshwater species Chironomus tentans, Physa heterostropha, Ictalurus punctatus, Hyalella azteca, Hydra oligactis and Chlorohydra viridissimus. Report presented to Dr. Rick D.Cardwell, EBASCO Services Inc., Bellevue, WA: 24 p. doi:

  • Birceanu O, Chowdhury MJ, Gillis PL, McGeer JC, Wood CM, Wilkie MP (2008) Modes of metal toxicity and impaired branchial ionoregulation in rainbow trout exposed to mixtures of Pb and Cd in soft water. Aquat Toxicol 89:222–231. https://doi.org/10.1016/j.aquatox.2008.07.007

    Article  CAS  Google Scholar 

  • Bray DJ, Thompson VJ (2016) Bidyanus bidyanus in Fishes of Australia, accessed 21 Oct 2016, http://fishesofaustralia.net.au/home/species/689

  • Brooke LT, Call DJ, Poirier SH, Lindberg CA, Markee TP (1986) Acute toxicity of antimony III to several species of freshwater organisms. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, WI: 12 p.

  • Campbell HA, Handy RD, Sims DW (2002) Increased metabolic cost of swimming and consequent alterations to circadian activity in rainbow trout (Oncorhynchus mykiss) exposed to dietary copper. Can J Fish Aquat Sci 59:768–777. https://doi.org/10.1139/f02-046

    Article  CAS  Google Scholar 

  • Chapman PM (2008) Environmental risks of inorganic metals and metalloids: a continuing, evolving scientific Odyssey. Hum Ecol Risk Assess Int J 14:5–40. https://doi.org/10.1080/10807030701790272

    Article  CAS  Google Scholar 

  • Chen LH, Yang JL (2007) Acute toxicity of antimony chloride and its effects on oxygen consumption of common carp (Cyprinus carpio). Bull Environ Contam Toxicol 78:459–462. https://doi.org/10.1007/s00128-007-9205-8

    Article  CAS  Google Scholar 

  • Cohen AM, Nugegoda D (2000) Toxicity of three oil spill remediation techniques to the Australian Bass Macquaria novemaculeata. Ecotoxicol Environ Saf 47:178–185. https://doi.org/10.1006/eesa.2000.1946

    Article  CAS  Google Scholar 

  • Cohen A, Gagnon MM, Nugegoda D (2005) Alterations of metabolic enzymes in Australian Bass, Macquaria novemaculeata, after exposure to petroleum hydrocarbons. Arch Environ Contam Toxicol 49:200–205. https://doi.org/10.1007/s00244-004-0174-1

    Article  CAS  Google Scholar 

  • Australian Department of the Environment (2013) Conservation advice. Bidyanus bidyanus (silver perch). Threatened Species Scientific Committee Secretariat, Species Information and Policy Section, Department of the Environment Canberra ACT 2601. Available at http://www.environment.gov.au/biodiversity/threatened/species/pubs/76155-conservation-advice.pdf. doi:

  • Cooper RG, Harrison AP (2009) The exposure to and health effects of antimony. Indian J Occupat Environ Med 13:3–10. https://doi.org/10.4103/0019-5278.50716

    Article  Google Scholar 

  • Da Justa Neves DB, Caldas ED, Sampaio RNR (2009) Antimony in plasma and skin of patients with cutaneous leishmaniasis – relationship with side effects after treatment with meglumine antimoniate. Tropical Med Int Health 14:1515–1522. https://doi.org/10.1111/j.1365-3156.2009.02408.x

    Article  CAS  Google Scholar 

  • DeForest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84:236–246. https://doi.org/10.1016/j.aquatox.2007.02.022

    Article  CAS  Google Scholar 

  • Dell’Omo G (2002) Behavioural ecotoxicology. Wiley, Chichester

    Google Scholar 

  • Di Giulio RT, Hinton DE (2008) The toxicology of fishes. CRC Press, USA

    Book  Google Scholar 

  • Doe KG, Parker WR, Ponsford SJ, Vaughan JDA (1987) The acute and chronic toxicity of antimony to Daphnia magna and rainbow trout. Canadian Tech Report Fish Aqua Sci 1575:40–43

    Google Scholar 

  • Drummond R, Russom C (1990) Behavioral toxicity syndromes: a promising tool for assessing toxicity mechanisms in juvenile fathead minnows. Environ Toxicol Chem 9:37–46

    Article  CAS  Google Scholar 

  • Emlen JM, Freeman DC, Mills A, Graham JH (1998) How organisms do the right thing: the attractor hypothesis. Chaos 8:717–726. https://doi.org/10.1063/1.166355

    Article  Google Scholar 

  • Fielder D, Heasman M (2011) Hatchery manual for the production of Australian Bass, Mulloway and Yellowtail Kingfish. Industry & Investment NSW, ISBN 978 1 74256 058 8. 176 pp

  • Filella M, Belzile N, Chen Y-W (2002a) Antimony in the environment: a review focused on natural waters: I Occurrence. Earth-Sci Rev 57:125–176. https://doi.org/10.1016/S0012-8252(01)00070-8

    Article  CAS  Google Scholar 

  • Filella M, Belzile N, Chen Y-W (2002b) Antimony in the environment: a review focused on natural waters II Relevant Solution Chemistry. Earth-Sci Rev 59:265–285. https://doi.org/10.1016/S0012-8252(02)00089-2

    Article  CAS  Google Scholar 

  • Filella M, Belzile N, Lett M-C (2007) Antimony in the environment: a review focused on natural waters III Microbiota Relevant Interactions. Earth-Sci Rev 80:195–217. https://doi.org/10.1016/j.earscirev.2006.09.003

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, New York

    Google Scholar 

  • Haldar AK, Sen P, Roy S (2011) Use of antimony in the treatment of Leishmaniasis: current status and future directions. Mole Bio Int 2011:23. https://doi.org/10.4061/2011/571242

    Article  Google Scholar 

  • Hammel W, Steubing L, Debus R (1998) Assessment of the ecotoxic potential of soil contaminants by using a soil-algae test. Ecotoxicol Environ Saf 40:173–176. https://doi.org/10.1006/eesa.1998.1659

    Article  CAS  Google Scholar 

  • Hansell C (2015) All manner of antimony. Nat Chem 7:88–88. https://doi.org/10.1038/nchem.2134

    Article  CAS  Google Scholar 

  • Heier LS, Lien IB, Strømseng AE, Ljønes M, Rosseland BO, Tollefsen K-E, Salbu B (2009) Speciation of lead, copper, zinc and antimony in water draining a shooting range—Time dependant metal accumulation and biomarker responses in brown trout (Salmo trutta L.). Sci Total Environ 407:4047–4055. https://doi.org/10.1016/j.scitotenv.2009.03.002

    Article  CAS  Google Scholar 

  • He M, Wang X, Wu F, Fu Z (2012) Antimony pollution in China. Sci Total Environ 421–422:41–50. https://doi.org/10.1016/j.scitotenv.2011.06.009

    Article  CAS  Google Scholar 

  • He M, Zhang C, Zhong Q, Shan J, Wang T, Liu H, Jiao Y, Song K, Yin X (2021) Antimony, Chapter 5 Antimony in China:. De Gruyter, pp. 95–128

  • Hoese DF, Bray DJ, Paxton JR, Allen GR (2006) Fishes. In: Beesley PL, Wells A (eds) Zoological catalogue of Australia, parts 1–3. ABRS & CSIRO Publishing, Australia, pp 1–2178

    Google Scholar 

  • Huntingford FA, Adams C, Braithwaite VA, Kadri S, Pottinger TG, Sandøe P, Turnbull JF (2006) Current issues in fish welfare. J Fish Biol 68:332–372. https://doi.org/10.1111/j.0022-1112.2006.001046.x

    Article  Google Scholar 

  • Hwang P-P, Lee T-H, Lin L-Y (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol-Regulat, Integrat Compar Physiol 301:R28–R47

    Article  CAS  Google Scholar 

  • Jeffree RA, Markich SJ, Twining JR (2014) Diminished metal accumulation in riverine fishes exposed to acid mine drainage over five decades. PLoS ONE 9:e91371. https://doi.org/10.1371/journal.pone.0091371

    Article  CAS  Google Scholar 

  • Jin Z, Zhang Z, Xiu J, Song H, Gatti T, He Z (2020) A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges. J Mater Chem A 8:16166–16188. https://doi.org/10.1039/D0TA05433J

    Article  CAS  Google Scholar 

  • Juhnke I, Lüdemann D (1978) Ergebnisse der untersuchung von 200 chemischen verbindungen auf akute fischtoxizität mit dem Goldorfentest (Results of the investigation of 200 chemical compounds for acute fish toxicity with the golden orfe test). Z F Wasser- Und Abwasser-Forschung 11:161–164

    CAS  Google Scholar 

  • Kimball G (1978) The effects of lesser known metals and one organic to Fathead Minnows (Pimephales promelas) and Daphnia magna. Department of Entomology, Fisheries and Wildlife, University of Minnesota Minneapolis, MN

    Google Scholar 

  • Kitamura H (1990) Relation between the toxicity of some toxicants to the aquatic animals (Tanichthys albonubes and Neocaridina denticulata) and the hardness of the test solution. Bulletin of the Faculty of Fisheries Nagasaki University 67:13–19

    Google Scholar 

  • Lavanya S, Ramesh M, Kavitha C, Malarvizhi A (2011) Hematological, biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic. Chemosphere 82:977–985. https://doi.org/10.1016/j.chemosphere.2010.10.071

    Article  CAS  Google Scholar 

  • Leonard EM, Wood CM (2013) Acute toxicity, critical body residues, Michaelis-Menten analysis of bioaccumulation, and ionoregulatory disturbance in response to waterborne nickel in four invertebrates: Chironomus riparius, Lymnaea stagnalis, Lumbriculus variegatus and Daphnia pulex. Comp Biochem Physiol c: Toxicol Pharmacol 158:10–21. https://doi.org/10.1016/j.cbpc.2013.03.008

    Article  CAS  Google Scholar 

  • Leonard EM, Barcarolli I, Silva KR, Wasielesky W, Wood CM, Bianchini A (2011) The effects of salinity on acute and chronic nickel toxicity and bioaccumulation in two euryhaline crustaceans: Litopenaeus vannamei and Excirolana armata. Comp Biochem Physiol c: Toxicol Pharmacol 154:409–419. https://doi.org/10.1016/j.cbpc.2011.07.011

    Article  CAS  Google Scholar 

  • Leonard EM, Marentette JR, Balshine S, Wood CM (2014) Critical body residues, Michaelis-Menten analysis of bioaccumulation, lethality and behaviour as endpoints of waterborne Ni toxicity in two teleosts. Ecotoxicol 23:147–162. https://doi.org/10.1007/s10646-013-1159-5

    Article  CAS  Google Scholar 

  • Lewińska K, Karczewska A (2019) Antimony in soils of SW Poland-an overview of potentially enriched sites. Environ Monit Assess 191:70–70. https://doi.org/10.1007/s10661-019-7214-9

    Article  CAS  Google Scholar 

  • Lewis RG, Flomenbaum N, Hoffman RS, Howland MA, Lewin NA, Nelson LS (2006) Antimony, Goldfrank’s toxicologic emergencies. McGraw-Hill, New York

    Google Scholar 

  • Lindemann T, Prange A, Dannecker W, Neidhart B (2000) Stability studies of arsenic, selenium, antimony and tellurium species in water, urine, fish and soil extracts using HPLC/ICP-MS. Fresenius J Anal Chem 368:214–220. https://doi.org/10.1007/s002160000475

    Article  CAS  Google Scholar 

  • Lin HC, Hwang PP (1998) Acute and chronic effects of antimony chloride (SbCl3) on tilapia (Oreochromis mossambicus) larvae. Bull Environ Contam Toxicol 61:129–134. https://doi.org/10.1007/s001289900739

    Article  CAS  Google Scholar 

  • Li J, Wang Q, Oremland RS, Kulp TR, Rensing C, Wang G (2016) Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways. Appl Environ Microbiol 82:5482–5495. https://doi.org/10.1128/AEM.01375-16

    Article  CAS  Google Scholar 

  • Luoma SN, Cain DJ, Rainbow PS (2010) Calibrating biomonitors to ecological disturbance: a new technique for explaining metal effects in natural waters. Integr Environ Assess Manag 6:199–209. https://doi.org/10.1897/IEAM_2009-067.1

    Article  CAS  Google Scholar 

  • MacPhee C, Ruelle R (1969) Lethal effects of 1888 chemicals upon four species of fish from Western North America. University of Idaho [Forest, Wildlife, and Range Experiment Station, Moscow, Idaho]. Bulletin No. 3, 1–17pp. Accessed 26th May at http://digital.lib.uidaho.edu/cdm/ref/collection/idahowater/id/393, 112 pp

  • Maher W, Forster S, Krikowa F, Snitch P, Chapple G, Craig P (2001) Measurement of trace elements and phosphorus in marine animal and plant tissues by low-volume microwave digestion and ICP-MS. Atom Spectrosc 22:361–370

    CAS  Google Scholar 

  • Maher WA, Krikowa F, Foster SD, Ellwood MJ, Bennett William W (2018) Antimony measurements in environmental matrices: seven considerations. J Anal at Spectrom 33:706–712. https://doi.org/10.1039/C7JA00391A

    Article  CAS  Google Scholar 

  • Martin MH (2012) Biological monitoring of heavy metal pollution: land and air. Springer, Berlin

    Google Scholar 

  • Martins CM, Galhardo L, Noble C, Damsgård B, Spedicato M, Zupa W, Beauchaud M, Kulczykowska E, Massabuau J-C, Carter T, Planellas S, Kristiansen T (2012) Behavioural indicators of welfare in farmed fish. Fish Physiol Biochem 38:17–41. https://doi.org/10.1007/s10695-011-9518-8

    Article  CAS  Google Scholar 

  • May M, Drost W, Germer S, Juffernholz T, Hahn S (2016) Evaluation of acute-to-chronic ratios of fish and Daphnia to predict acceptable no-effect levels. Environ Sci Eur 28:16. https://doi.org/10.1186/s12302-016-0084-7

    Article  Google Scholar 

  • Ma L, Wu J, Abuduwaili J, Liu W (2016) Geochemical responses to anthropogenic and natural influences in Ebinur Lake sediments of Arid Northwest China. PLoS ONE 11:e0155819. https://doi.org/10.1371/journal.pone.0155819

    Article  CAS  Google Scholar 

  • McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment. Body residues and modes of toxic action. Environ Sci Technol 27:1718–1728. https://doi.org/10.1021/es00046a001

    Article  CAS  Google Scholar 

  • McGeer JC, Brix KV, Skeaff JM, DeForest DK, Brigham SI, Adams WJ, Green A (2003) Inverse relationship between bioconcentration factor and exposure concentration for metals: Implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22:1017–1037. https://doi.org/10.1002/etc.5620220509

    Article  CAS  Google Scholar 

  • McGwire BS, Satoskar AR (2014) Leishmaniasis: clinical syndromes and treatment. QJM: an Int J Med. https://doi.org/10.1093/qjmed/hct116

    Article  Google Scholar 

  • Meador JP, McCarty LS, Escher BI, Adams WJ (2008) 10th anniversary critical review: the tissue-residue approach for toxicity assessment: concepts, issues, application, and recommendations. J Environ Monit 10:1486–1498. https://doi.org/10.1039/b814041n

    Article  CAS  Google Scholar 

  • Meng YL, Liu Z, Rosen BP (2004) As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 279:18334–18341

    Article  CAS  Google Scholar 

  • Nam S-H, Yang C-Y, An Y-J (2009) Effects of antimony on aquatic organisms (Larva and embryo of Oryzias latipes, Moina macrocopa, Simocephalus mixtus, and Pseudokirchneriella subcapitata). Chemosphere 75:889–893. https://doi.org/10.1016/j.chemosphere.2009.01.048

    Article  CAS  Google Scholar 

  • Nordlie FG (1976) Influence of environmental temperature on plasma ionic and osmotic concentrations in Mugil cephalus Lin. Comp Biochem Physiol A Physiol 55:379–381. https://doi.org/10.1016/0300-9629(76)90065-7

    Article  CAS  Google Scholar 

  • Obiakor MO, Ezeonyejiaku CD (2015) Copper–zinc coergisms and metal toxicity at predefined ratio concentrations: predictions based on synergistic ratio model. Ecotoxicol Environ Saf 117:149–154. https://doi.org/10.1016/j.ecoenv.2015.03.035

    Article  CAS  Google Scholar 

  • Obiakor MO, Tighe M, Pereg L, Wilson SC (2017a) Bioaccumulation, trophodynamics and ecotoxicity of antimony in environmental freshwater food webs. Crit Rev Environ Sci Technol 47:2208–2258. https://doi.org/10.1080/10643389.2017.1419790

    Article  CAS  Google Scholar 

  • Obiakor MO, Tighe M, Wang Z, Ezeonyejiaku CD, Pereg L, Wilson SC (2017b) The relative sensitivity of freshwater species to antimony(III): implications for water quality guidelines and ecological risk assessments. Environ Sci Pollut Res 24:25276–25290. https://doi.org/10.1007/s11356-017-0168-y

    Article  CAS  Google Scholar 

  • Obiakor MO, Wilson SC, Tighe M, Pereg L (2019) Antimony causes mortality and induces mutagenesis in the soil functional bacterium Azospirillum brasilense Sp7. Water, Air, Soil Pollut 230:183. https://doi.org/10.1007/s11270-019-4232-8

    Article  CAS  Google Scholar 

  • Obiakor MO, Tighe M, Pereg L, Maher W, Taylor AM, Wilson SC (2021) A pilot in vivo evaluation of Sb(III) and Sb(V) genotoxicity using comet assay and micronucleus test on the freshwater fish, silver perch Bidyanus bidyanus (Mitchell, 1838). Environ Adv. https://doi.org/10.1016/j.envadv.2021.100109

    Article  Google Scholar 

  • Ozdemir N, Soylak M, Elci L, Dogan M (2004) Speciation analysis of inorganic Sb(III) and Sb(V) ions by using mini column filled with Amberlite XAD-8 resin. Anal Chim Acta 505:37–41. https://doi.org/10.1016/S0003-2670(03)00353-2

    Article  CAS  Google Scholar 

  • Pankhurst NW (2011) The endocrinology of stress in fish: An environmental perspective. Gen Comp Endocrinol 170:265–275. https://doi.org/10.1016/j.ygcen.2010.07.017

    Article  CAS  Google Scholar 

  • OECD (2019) Test No. 203: Fish, acute toxicity test. OECD Guidelines for the Testing of Chemicals. Section 2, OECD Publishing, Paris, https://doi.org/10.1787/9789264069961-en.

  • Patra RW, Chapman JC, Lim RP, Gehrke PC (2007) The effects of three organic chemicals on the upper thermal tolerances of four freshwater fishes. Environ Toxicol Chem 26:1454–1459. https://doi.org/10.1897/06-156R1.1

    Article  CAS  Google Scholar 

  • Penttinen S, Malk V, Väisänen A, Penttinen OP (2011) Using the critical body residue approach to determine the acute toxicity of cadmium at varying levels of water hardness and dissolved organic carbon concentrations. Ecotoxicol Environ Saf 74:1151–1155. https://doi.org/10.1016/j.ecoenv.2011.03.017

    Article  CAS  Google Scholar 

  • Perry S, Bernier NJ (1999) The acute hormonal adrenergic stress response in fish: facts and fiction. Aquaculture 177:285–295

    Article  CAS  Google Scholar 

  • Quentel F, Filella M, Elleouet C, Madec C-L (2006) Sb(III) oxidation by iodate in seawater: a cautionary tale. Sci Total Environ 355:259–263. https://doi.org/10.1016/j.scitotenv.2005.01.048

    Article  CAS  Google Scholar 

  • Quiroz W, Arias H, Bravo M, Pinto M, Lobos MG, Cortés M (2011) Development of analytical method for determination of Sb(V), Sb(III) and TMSb(V) in occupationally exposed human urine samples by HPLC–HG-AFS. Microchem J 97:78–84. https://doi.org/10.1016/j.microc.2010.06.015

    Article  CAS  Google Scholar 

  • Rand GM (1995) Fundamentals of aquatic toxicology: effects, environmental fate and risk assessment. CRC Press, USA

    Google Scholar 

  • Rosen G, Rivera-Duarte I, Bart Chadwick D, Ryan A, Santore RC, Paquin PR (2008) Critical tissue copper residues for marine bivalve (Mytilus galloprovincialis) and echinoderm (Strongylocentrotus purpuratus) embryonic development: conceptual, regulatory and environmental implications. Mar Environ Res 66:327–336. https://doi.org/10.1016/j.marenvres.2008.05.006

    Article  CAS  Google Scholar 

  • Rowland S (1998) Silver perch. The new rural industries - A handbook for farmers and investors.

  • Rowland S, Bryant C, (eds). (1994) Silver perch culture, Proceedings of Silver Perch Aquaculture Workshops. Austasia Aquaculture Publication, Grafton and Narrandera, Australia

  • Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179:3365–3367. https://doi.org/10.1128/jb.179.10.3365-3367.1997

    Article  CAS  Google Scholar 

  • Schlekat CE, McGeer JC, Blust R, Borgmann U, Brix KV, Bury N, Couillard Y, Dwyer RL, Luoma SN, Robertson S, Sappington KG, Schoeters I, Sijm DTHM (2007) Chapter 4 Bioaccumulation: Hazard identification of metals and inorganic metal substances In: Adams WJ , Chapman PM (Eds), Assessing the hazard of metals and inorganic metal substances in aquatic and terrestrial systems. CRC Press and Society of Environmental Toxicology and Chemistry (SETAC), pp. 55–87

  • Schmidt TS, Clements WH, Zuellig RE, Mitchell KA, Church SE, Wanty RB, San Juan CA, Adams M, Lamothe PJ (2011) Critical tissue residue approach linking accumulated metals in aquatic insects to population and community-level effects. Environ Sci Technol 45:7004–7010. https://doi.org/10.1021/es200215s

    Article  CAS  Google Scholar 

  • Schreck CB (2010) Stress and fish reproduction: The roles of allostasis and hormesis. Gen Comp Endocrinol 165:549–556. https://doi.org/10.1016/j.ygcen.2009.07.004

    Article  CAS  Google Scholar 

  • Schreck CB, Tort L, Farrell AP, Brauner CJ (2016) Biology of stress in fish. Academic Press, Cambridge

    Google Scholar 

  • Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392. https://doi.org/10.1016/j.aquatox.2004.03.016

    Article  CAS  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611. https://doi.org/10.1093/biomet/52.3-4.591

    Article  Google Scholar 

  • Simkiss K, Taylor MG (2001) Trace element speciation at cell membranes: aqueous, solid and lipid phase effects. J Environ Monit 3:15–21

    Article  CAS  Google Scholar 

  • Small K, Kopf RK, Watts RJ, Howitt J (2014) Hypoxia, blackwater and fish kills: experimental lethal oxygen thresholds in juvenile predatory lowland river fishes. PLoS ONE 9:e94524

    Article  Google Scholar 

  • Sovová T, Boyle D, Sloman KA, Vanegas Pérez C, Handy RD (2014) Impaired behavioural response to alarm substance in rainbow trout exposed to copper nanoparticles. Aquat Toxicol 152:195–204. https://doi.org/10.1016/j.aquatox.2014.04.003

    Article  CAS  Google Scholar 

  • Spehar RL (1987) Criteria document data on antimony. Memo to C. Stephan, Aug.27th , U.S.EPA, Duluth, MN: 22p

  • Stephan CE (1978) Results of toxicity tests. Memo to J.Carroll, Feb.13th, U.S.EPA, Washington, DC: 2p

  • Sumpter JP (1997) The endocrinology of stress. In Fish Stress and Health in Aquaculture. (Iwama, G. K., Pickering, A. D., Sumper, J. P. & Schreck, C. B., (eds). pp. 95–118. Society for Experiment Biology, Seminar Series 62, Cambridge University Press, Cambridge

  • Takayanagi K (2001) Acute toxicity of waterborne Se(IV), Se(VI), Sb(III), and Sb(V) on Red Seabream (Pargus major). Bull Environ Contam Toxicol 66:808–813. https://doi.org/10.1007/s001280080

    Article  CAS  Google Scholar 

  • Tejerina-Garro FL, Maldonado M, Ibañez C, Pont D, Roset N, Oberdorff T (2005) Effects of natural and anthropogenic environmental changes on riverine fish assemblages: a framework for ecological assessment of rivers. Brazil Arch Bio Tech 48:91–108

    Article  Google Scholar 

  • Telford K, Maher W, Krikowa F, Foster S, Ellwood MJ, Ashley PM, Lockwood PV, Wilson SC (2009) Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environ Chem 6:133–143. https://doi.org/10.1071/EN08097

    Article  CAS  Google Scholar 

  • Tighe M, Ashley P, Lockwood P, Wilson S (2005) Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Sci Total Environ 347:175–186. https://doi.org/10.1016/j.scitotenv.2004.12.008

    Article  CAS  Google Scholar 

  • Triebskorn R, Köhler HR, Honnen W, Schramm M, Adams SM, Müller EF (1997) Induction of heat shock proteins, changes in liver ultrastructure, and alterations of fish behavior: are these biomarkers related and are they useful to reflect the state of pollution in the field? J Aqua Ecosys Stress Recovery (formerly J Aqua Ecosys Health) 6:57–73

    Article  CAS  Google Scholar 

  • Trinski T, Hay AC (2005) Percichthyidae Macquaria novemaculeata (Steindachner, 1866). Australian Bass. Australian Museum Larval Fishes Website, viewed 20 June 2015, http://australianmuseum.net.au/Larval-Australian-Bass-Macquaria-novemaculeata doi:

  • US Geological Survey (2004) Mineral commodity profiles - Antimony. https://pubs.usgs.gov/of/2003/of03-019/of03-019.pdf

  • US Geological Survey (2020) Mineral commodity summaries - Antimony. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-antimony.pdf

  • van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  • Vieira LR, Gravato C, Soares AMVM, Morgado F, Guilhermino L (2009) Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behaviour. Chemosphere 76:1416–1427. https://doi.org/10.1016/j.chemosphere.2009.06.005

    Article  CAS  Google Scholar 

  • Warne MSJ, Batley GE, Braga O, Chapman JC, Fox DR, Hickey CW, Stauber JL, Van Dam R (2014) Revisions to the derivation of the Australian and New Zealand guidelines for toxicants in fresh and marine waters. Environ Sci Pollut Res 21:51–60. https://doi.org/10.1007/s11356-013-1779-6

    Article  Google Scholar 

  • Wells A, Hoese DF, Bray DJ, Allen GR, Paxton JR, Beesley PL (2007) Zoological Catalogue of Australia 35, Parts 1 – 3: Fishes, 35. CSIRO Publishing / Australian Biological Resources Study (ABRS) Collingwood Victoria, Australia 2248 pp

  • Wilson SC, Lockwood PV, Ashley PM, Tighe M (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ Pollut 158:1169–1181. https://doi.org/10.1016/j.envpol.2009.10.045

    Article  CAS  Google Scholar 

  • Wood CM (2003) Toxic responses of the gill. In: Schlenk D, Benson WH (eds) Target organ toxicity in marine and freshwater teleosts: organs. CRC Press, USA

    Google Scholar 

  • Yang J-L (2014) Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper(II) on freshwater swamp shrimp (Macrobrachium nipponense). Biol Res 47:13. https://doi.org/10.1186/0717-6287-47-13

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, fifth ed.s. Prentice Hall, Inc., New Jersey, pp. 189–248

Download references

Funding

Funding for this work was provided by the University of New England Internal Research Seed grant.

Author information

Authors and Affiliations

Authors

Contributions

MOO contributed to conceptualisation, formal analysis, investigation, and writing—original draft preparation; MOO, MT, LP, and SCW contributed to methodology; MOO, MT, LP, WM, AMT, and SCW contributed to writing—review and editing and provided resources; SCW, MT, and MOO acquired funding; MT, LP, WM, AMT, SCW contributed to supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maximilian Obinna Obiakor.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethics Approval

The experimental protocol and animal handling procedures were approved by the Animal Ethics Committee of the University of New England Australia in accordance with guidelines of the Australian Code for the Care and Use of Animals for Scientific Purposes (Authority No. AEC14-113).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obiakor, M.O., Tighe, M.K., Pereg, L. et al. Sensitivity of Freshwater Australian Bass (Macquaria novemaculeata) and Silver Perch (Bidyanus bidyanus) to Waterborne Antimony: Exposure–Dose–Response Characteristics and Ion Homeostasis. Arch Environ Contam Toxicol 81, 621–636 (2021). https://doi.org/10.1007/s00244-021-00891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-021-00891-7

Navigation