Skip to main content

Advertisement

Log in

Application of Tryptophan Fluorescence to Assess Sensitizing Potentials of Chemicals

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

There are too many chemical substances around our living space. However, the toxicity of most of them has not been reported, especially regarding their sensitizing potentials. We aimed to develop a simple in vitro method to quantitatively predict the sensitizing potentials of chemicals by measuring the fluorescence of chemical-human serum albumin (HSA) complexes. HSA was treated with test chemicals and then analyzed by tryptophan fluorescence and protein concentration measurement. Four commonly designated sensitizers, two possible sensitizers, and two nonsensitizers were examined using the tryptophan fluorescence assay. HSA fluorescence at 280 nm excitation and 340 nm emission was reduced by toluene 2,4-diisocyanate (TDI), dose dependently. The addition of TDI immediately reduced the fluorescence, and it was stable for 6 h to 21 days after treatment, with a slight decrease. The reduction of HSA fluorescence by chemicals was in the order: commonly designated sensitizers > possible sensitizers > nonsensitizers. Chemical treatment at 0.05 and 0.5 mM led to optimal separation among the three groups. o-Phthalaldehyde (OPA), which has not been evaluated regarding its sensitization potential by any of the authorized organizations, reduced HSA fluorescence as much as the commonly designated sensitizer at final concentrations of the chemical of 0.05 and 0.5 mM. According to our method, OPA is evaluated as a commonly designated sensitizer. The treatment of all test chemicals did not lead to marked differences in the total protein concentrations by either the Lowry or the Bradford method. The assay utilizing tryptophan fluorescence loss of HSA after chemical treatment is a promising method to evaluate the sensitizing potentials of chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agius RM, Nee J, McGovern B, Robertson A (1991) Structure activity hypotheses in occupational asthma caused by low molecular weight substances. Ann Occup Hyg 35:129–137. doi:10.1093/annhyg/35.2.129

    Article  CAS  Google Scholar 

  • Aleksic M, Pease CK, Basketter DA, Panico M, Morris HR, Dell A (2007) Investigating protein haptenation mechanisms of skin sensitisers using human serum albumin as a model protein. Toxicol In Vitro 21:723–733. doi:10.1016/j.tiv.2007.01.008

    Article  CAS  Google Scholar 

  • American Conference of Governmental Industrial Health (2007) TLVs® and BEIs®. ACGIH, Cincinnati, OH, pp 1–89

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Buehler EV (1965) Delayed contact hypersensitivity in the guinea pig. Arch Dermatol 91:171–177

    Article  CAS  Google Scholar 

  • Caldwell CR (1987) Temperature-induced protein conformational changes in Barley root plasma membrane-enriched microsomes: II. Intrinsic protein fluorescence. Plant Physiol 84:924–929. doi:10.1104/pp.84.3.924

    Article  CAS  Google Scholar 

  • Capeillere-Blandin C, Delaveau T, Descamps-Latscha B (1991) Structural modifications of human microglobulin treated with oxygen-derived radicals. Biochem J 227:175–182

    Google Scholar 

  • Corsini E, Kimber I (2007) Factors governing susceptibility to chemical allergy. Toxicol Lett 168:255–259. doi:10.1016/j.toxlet.2006.09.015

    Article  CAS  Google Scholar 

  • Davies KJ, Delsignore ME, Lin SW (1987) Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J Biol Chem 262:9902–9907

    CAS  Google Scholar 

  • Dearman RJ, Basketter DA, Kimber I (1992) Variable effects of chemical allergens on serum IgE concentration in mice Preliminary evaluation of a novel approach to the identification of respiratory sensitizers. J Appl Toxicol 12:317–323. doi:10.1002/jat.2550120505

    Article  CAS  Google Scholar 

  • Deutsche Forschungsgemeinschaft (2004) List of MAK and BAT values. Report 40. Commission for the investigation of health hazards of chemical compounds in the work area. Deutsche Forschungsgemeinschaft 

  • Divkovic M, Pease CK, Gerberick GF, Basketter DA (2005) Hapten-protein binding: from theory to practical application in the in vitro prediction of skin sensitization. Contact Derm 53:189–200. doi:10.1111/j.0105-1873.2005.00683.x

    Article  CAS  Google Scholar 

  • European Union (2002) EU, Council Directive 67/548/EEC. Annex I. The sensitization, 7th edn. http://europa.eu.int/comm/environment/dansub/home_en.htm 

  • Feldman I, Young D, McGuire R (1975) Static and dynamic quenching of protein fluorescence. I. Bovine serum albumin. Biopolymers 14:335–351. doi:10.1002/bip.1975.360140208

    Article  CAS  Google Scholar 

  • Gauggel DL, Sarlo K, Asquith TN (1993) A proposed screen for evaluating low-molecular-weight chemicals as potential respiratory allergens. J Appl Toxicol 13:307–313. doi:10.1002/jat.2550130503

    Article  CAS  Google Scholar 

  • Gerberick GF, Ryan CA, Kern PS, Dearman RJ, Kimber I, Patlewicz GY, Basketter DA (2004) A chemical dataset for evaluation of alternative approaches to skin-sensitization testing. Contact Derm 50:274–288. doi:10.1111/j.0105-1873.2004.00290.x

    Article  CAS  Google Scholar 

  • Gerberick GF, Ryan CA, Dearman RJ, Kimber I (2007) Local lymph node assay (LLNA) for detection of sensitization capacity of chemicals. Methods 41:54–60. doi:10.1016/j.ymeth.2006.07.006

    Article  CAS  Google Scholar 

  • Gerberick F, Aleksic M, Basketter D, Casati S, Karlberg AT, Kern P, Kimber I, Lepoittevin JP, Natsch A, Ovigne JM, Rovida C, Sakaguchi H, Schultz T (2008) Chemical reactivity measurement and the predictive identification of skin sensitisers. ATLA 36:215–242

    CAS  Google Scholar 

  • Kanagawa Environmental Research Center (2006) http://www.k-erc.pref.kanagawa.jp/prtr/chemicals/list1.htm and http://www.k-erc.pref.kanagawa.jp/prtr/chemicals/list2.htm

  • Kanerva L, Jolanki R, Tupasela O, Halmepuro L, Keskinen H, Estlander T, Sysilampi ML (1991) Immediate and delayed allergy from epoxy resins based on diglycidyl ether of bisphenol A. Scand J Work Environ Health 17:208–215

    CAS  Google Scholar 

  • Karol MH, Graham C, Gealy R, Macina OT, Sussman N, Rosenkranz HS (1996) Structure-activity relationships and computer-assisted analysis of respiratory sensitization potential. Toxicol Lett 86:187–191. doi:10.1016/0378-4274(96)03689-2

    Article  CAS  Google Scholar 

  • Kato H, Okamoto M, Yamashita K, Nakamura Y, Fukumori Y, Nakai K, Kaneko H (2003) Peptide-binding assessment using mass spectrometry as a new screening method for skin sensitization. J Toxicol Sci 28:19–24. doi:10.2131/jts.28.19

    Article  CAS  Google Scholar 

  • Kawamoto T, Oyama T, Isse T, Pham TTP (2008). An eletrophoretic study on covalent bidings of sensitizing chemical substances to albumin. In: 47th Annual Meeting of Society of Toxicology, Seattle, WA

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Magnusson B, Kligman AM (1970) Allergic contact dermatitis in the guinea pig. Charles C Thomas, Springfield, IL

    Google Scholar 

  • Murakami T, Oyama T, Isse T, Narai R, Kanaoka M, Pham TTP, Kawamoto T (2007a) International comparison of sensitizing chemical substances. J UOEH 29:303–388

    CAS  Google Scholar 

  • Murakami T, Oyama T, Isse T, Ogawa M, Sugie T, Kawamoto T (2007b) International comparison of criteria for evaluating sensitization of PRTR-designated chemical substances. Environ Health Prev Med 12:56–65. doi:10.1007/BF02898150

    Article  Google Scholar 

  • National Toxicology Program NIH (2007) Chemical information profile for o-phthalaldehyde. National Institute of Environmental Health Sciences, Research Triangle Park, NC

    Google Scholar 

  • Natsch A, Gfeller H, Rothaupt M, Ellis G (2007) Utility and limitations of a peptide reactivity assay to predict fragrance allergens in vitro. Toxicol In Vitro 21:1220–1226. doi:10.1016/j.tiv.2007.03.016

    Article  CAS  Google Scholar 

  • Nielsen J, Welinder H, Schutz A, Skerfving S (1988) Specific serum antibodies against phthalic anhydride in occupationally exposed subjects. J Allergy Clin Immunol 82:126–133. doi:10.1016/0091-6749(88)90062-0

    Article  CAS  Google Scholar 

  • Pronk A, Preller L, Raulf-Heimsoth M, Jonkers IC, Lammers JW, Wouters IM, Doekes G, Wisnewski AV, Heederik D (2007) Respiratory symptoms, sensitization and associations with isocyanate exposure in spray painters. Am J Respir Crit Care Med 176(11):1090–1097

    Article  CAS  Google Scholar 

  • Shaffer MP, Belsito DV (2000) Allergic contact dermatitis from glutaraldehyde in health-care workers. Contact Derm 43:150–156. doi:10.1034/j.1600-0536.2000.043003150.x

    Article  CAS  Google Scholar 

  • Simonian M, Smith J (2006) Spectrophotometric and colorimetric determination of protein concentration. In: Current protocols of molecular biology. Beckman-Coulter, Fulton, CA, Chap 10, Unit 10.1A

  • Sokol WN (2004) Nine episodes of anaphylaxis following cystoscopy caused by Cidex OPA (ortho-phthalaldehyde) high-level disinfectant in 4 patients after cytoscopy. J Allergy Clin Immunol 114:392–397. doi:10.1016/j.jaci.2004.04.031

    Article  Google Scholar 

  • Suzukawa M, Yamaguchi M, Komiya A, Kimura M, Nito T, Yamamoto K (2006) Ortho-phthalaldehyde-induced anaphylaxis after laryngoscopy. J Allergy Clin Immunol 117:1500–1501. doi:10.1016/j.jaci.2006.02.015

    Article  Google Scholar 

  • Takahashi N, Takahashi Y, Blumberg BS, Putnam FW (1987) Amino acid substitutions in genetic variants of human serum albumin and in sequences inferred from molecular cloning. Proc Natl Acad Sci USA 84:4413–4417. doi:10.1073/pnas.84.13.4413

    Article  CAS  Google Scholar 

  • The Japan Society for Occupational Health (2007) Recommendation of occupational exposure limits (2007–2008). J Occup Health 49:328–344

    Google Scholar 

  • Waters A, Beach J, Abramson M (2003) Symptoms and lung function in health care personnel exposed to glutaraldehyde. Am J Ind Med 43:196–203. doi:10.1002/ajim.10172

    Article  Google Scholar 

  • Wernfors M, Nielsen J, Schutz A, Skerfving S (1986) Phthalic anhydride-induced occupational asthma. Int Arch Allergy Appl Immunol 79:77–82

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by UOEH Grants for Advanced Research (H17-01, H18-04, and H19-01), Grants-in-Aid for Scientific Research (B) (18390187) from the Japan Society for the Promotion of Science (JSPS), and the Long-range Research Initiative (2007IT01) of the Japan Chemical Industry Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Kawamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, TTP., Oyama, T., Isse, T. et al. Application of Tryptophan Fluorescence to Assess Sensitizing Potentials of Chemicals. Arch Environ Contam Toxicol 57, 427–436 (2009). https://doi.org/10.1007/s00244-009-9297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9297-8

Keywords

Navigation