Skip to main content

Advertisement

Log in

Effects of Single and Combined Embryonic Exposures to Herbicide and Conspecific Chemical Alarm Cues on Hatching and Larval Traits in the Common Frog (Rana temporaria)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Recent studies indicate that amphibian embryos can exhibit hatching plasticity in response to chemical cues indicative of a predation risk. However, data are lacking concerning the possible impacts of waterborne contaminants on such a process. To investigate this impact, we raised eggs of the common frog (Rana temporaria) until hatching in water contaminated with sublethal concentrations (0.01, 0.1, and 1 mg/L) of amitrole, a widely used triazole herbicide, either with or without the presence of chemical alarm cues from crushed conspecific tadpoles. Embryonic exposure to conspecific alarm cues resulted in a delay in hatching, reduced growth, and decreased larval activity, regardless of the amitrole concentration present during the incubation. Conspecific cues also induced morphological changes, but only in individuals incubated in water contaminated with the highest amitrole concentration. The herbicide impacts on hatching time were restricted to embryos incubated in the presence of conspecific cues, with individuals exposed to 0.1 and 1 mg/L showing an extended embryonic period compared to controls in uncontaminated water. Whether tested alone or in combination with conspecific cues, amitrole also induced slight morphological changes but did not affect larval growth or behavioral activity. Thus, depending on the trait considered, both chemical stressors exhibited either single or interactive effects. Furthermore, our data indicate that a stressing factor without apparent impact when tested alone could exert effects when combined with another stressor. Such results highlight the importance of considering multiple environmental factors and biological traits when examining stress-induced phenotypic variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allran JW, Karasov WH (2001) Effects of atrazine on embryos, larvae, and adults of anuran amphibians. Environ Toxicol Chem 20:769–775. doi :10.1897/1551-5028(2001)020<0769:EOAOEL>2.0.CO;2

    Article  CAS  Google Scholar 

  • Ankley GT, Tietge JE, De Foe DL et al (1998) Effects of ultraviolet light and methoprene on survival and development of Rana pipiens. Environ Toxicol Chem 17:2530–2542. doi :10.1897/1551-5028(1998)017<2530:EOULAM>2.3.CO;2

    Article  CAS  Google Scholar 

  • Benard MF, Fordyce JA (2003) Are induced defenses costly? Consequences of predator-induced defenses in Western toads, Bufo boreas. Ecology 84:68–78

    Article  Google Scholar 

  • Berrill M, Bertram S (1997) Effects of pesticides on amphibian embryos and larvae. Herpetol Conserv 1:233–245

    Google Scholar 

  • Berrill M, Bertram S, Wilson A, Louis S, Brigham D, Stromberg C (1993) Lethal and sublethal impacts of pyrethroid insecticides on amphibian embryos and tadpoles. Environ Toxicol Chem 12:525–539. doi:10.1897/1552-8618(1993)12[525:LASIOP]2.0.CO;2

    Article  CAS  Google Scholar 

  • Berrill M, Bertram S, Mc Gillivray L, Kolohon M, Pauli B (1994) Effects of low concentrations of forest use pesticides on frog embryos and tadpoles. Environ Toxicol Chem 13:657–664. doi:10.1897/1552-8618(1994)13[657:EOLCOF]2.0.CO;2

    Article  CAS  Google Scholar 

  • Berrill M, Coulson D, Mc Gillivray L, Pauli B (1998) Toxicity of endosulfan to aquatic stages of anuran amphibians. Environ Toxicol Chem 17:1738–1744. doi :10.1897/1551-5028(1998)017<1738:TOETAS>2.3.CO;2

    Article  CAS  Google Scholar 

  • Boone MD, Semlitsch RD (2001) Interactions of an insecticide with larval density and predation in experimental amphibian communities. Conserv Biol 15:228–238. doi:10.1046/j.1523-1739.2001.99475.x

    Article  Google Scholar 

  • Bridges CM (1999) Effects of a pesticide on tadpole activity and predator avoidance behaviour. J Herpetol 33:303–306. doi:10.2307/1565728

    Article  Google Scholar 

  • Bridges CM (2000) Long-term effects of pesticide exposure at various life stages of the southern leopard frog (Rana sphenocephala). Arch Environ Contam Toxicol 39:91–96. doi:10.1007/s002440010084

    Article  CAS  Google Scholar 

  • Broomhall SD (2002) The effects of endosulfan and variable water temperature on survivorship and subsequent vulnerability to predation in Litoria citropa tadpoles. Aquat Toxicol 61:243–250. doi:10.1016/S0166-445X(02)00061-9

    Article  CAS  Google Scholar 

  • Broomhall SD (2004) Egg temperature modifies predator avoidance and the effects of the insecticide endosulfan on tadpoles of an Australian frog. J Appl Ecol 41:105–113. doi:10.1111/j.1365-2664.2004.00883.x

    Article  Google Scholar 

  • Chivers DP, Kiesecker JM, Marco A, De Vito J, Anderson MT, Blaustein AR (2001) Predator induced life history changes in amphibians: egg predation induces hatching. Oikos 92:135–142. doi:10.1034/j.1600-0706.2001.920116.x

    Article  Google Scholar 

  • Colombo A, Orsi F, Bonfanti P (2005) Exposure to the organophosphorus pesticide chlorpyrifos inhibits acetylcholinesterase activity and affects muscular integrity in Xenopus laevis larvae. Chemosphere 61:1665–1671. doi:10.1016/j.chemosphere.2005.04.005

    Article  CAS  Google Scholar 

  • Dayton GH, Saenz D, Baum KA, Langerhans RB, DeWitt TJ (2005) Body shape, burst speed and escape behavior of larval anurans. Oikos 111:582–591. doi:10.1111/j.1600-0706.2005.14340.x

    Article  Google Scholar 

  • Degitz SJ, Durhan EJ, Tietge JE, Kosian PA, Holcombe GW, Hankley GT (2003) Developmental toxicity of methoprene and several degradation products in Xenopus laevi. Aquat Toxicol 64:97–105. doi:10.1016/S0166-445X(03)00022-5

    Article  CAS  Google Scholar 

  • Edginton AN, Sheridan PM, Stephenson GR, Thompson DG, Boermans HJ (2004) Comparative effects of pH and Vision® herbicide on two life stages of four anuran amphibian species. Environ Toxicol Chem 23:815–822. doi:10.1897/03-115

    Article  CAS  Google Scholar 

  • Ferrari MCO, Trowell JJ, Brown GE, Chivers DP (2005) The role of learning in development of threat-sensitive predator avoidance by fathead minnows. Anim Behav 70:777–784. doi:10.1016/j.anbehav.2005.01.009

    Article  Google Scholar 

  • Fort DJ, Guiney PD, Weeks JA et al (2004) Effect of methoxychlor on various life stages of Xenopus laevis. Toxicol Sci 81:454–466. doi:10.1093/toxsci/kfh243

    Article  CAS  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Greulich K, Pflugmacher S (2003) Differences in susceptibility of various life stages of amphibians to pesticide exposure. Aquat Toxicol 65:329–336. doi:10.1016/S0166-445X(03)00153-X

    Article  CAS  Google Scholar 

  • Harris ML, Chora L, Bishop A, Bogart JP (2000) Species- and age-related differences in susceptibility to pesticide exposure for two amphibians, Rana pipiens and Bufo americanus. Bull Environ Contam Toxicol 64:263–270. doi:10.1007/s001289910039

    Article  CAS  Google Scholar 

  • Hatch AC, GA Burton Jr (1998) Effects of photoinduced toxicity of fluoranthene on amphibian ambryos and larvae. Environ Toxicol Chem 17:1777–1785. doi :10.1897/1551-5028(1998)017<1777:EOPTOF>2.3.CO;2

    Article  CAS  Google Scholar 

  • Hickman CR, Stone MD, Mathis A (2004) Priority use of chemical over visual cues for detection of predators by graybelly salamanders, Eurycea multiplicata griseogaster. Herpetologica 60:203–210. doi:10.1655/03-26

    Article  Google Scholar 

  • IFEN (2004) Les pesticides dans les eaux. Sixième bilan annuel. Données 2002. Etudes et Travaux 42

  • IFEN (2006) Les pesticides dans les eaux. Données 2003 et 2004. Numéro 05

  • Ingermann RL, Bencic DC, Eroschenko VP (1997) Methoxychlor alters hatching and larval startle response in the salamander Ambystoma macrodactylum. Bull Environ Contam Toxicol 59:815–821. doi:10.1007/s001289900554

    Article  CAS  Google Scholar 

  • Ingermann RL, Bencic DC, Eroschenko VP (1999) Methoxychlor effects on hatching and larval startle response in the salamander Ambystoma macrodactylum are independent of its estrogenic actions. Bull Environ Contam Toxicol 62:578–583. doi:10.1007/s001289900914

    Article  CAS  Google Scholar 

  • Ingermann RL, Bencic DC, Verrell P (2002) Methoxychlor alters the predatory-prey relationship between dragonfly naiads and salamander larvae. Bull Environ Contam Toxicol 69:771–777. doi:10.1007/s00128-002-0022-9

    Article  CAS  Google Scholar 

  • Johnson CR (1976) Herbicide toxicities in some Australian anurans and the effect of subacute dosages on temperature tolerance. Zool J Linn Soc 59:79–83. doi:10.1111/j.1096-3642.1976.tb01010.x

    Article  Google Scholar 

  • Johnson JB, Saenz D, Adams CK, Conner RN (2003) The influence of predator threat on the timing of a life-history switch point: predator-induced hatching in the southern leopard frog (Rana sphenocephala). Can J Zool 81:1608–1613. doi:10.1139/z03-148

    Article  Google Scholar 

  • Kang HS, Gye MC, Kim MK (2005) Effects of alachlor on survival and development of Bombina orientalis (Boulenger) embryos. Bull Environ Contam Toxicol 74:1199–1206. doi:10.1007/s00128-005-0708-x

    Article  CAS  Google Scholar 

  • Kraft PG, Wilson RS, Franklin CE (2005) Predator-mediated phenotypic plasticity in tadpoles of the striped marsh frog, Limnodynastes peronii. Austral Ecol 30:558–563

    Article  Google Scholar 

  • Lafiandra EM, Babbitt KJ (2004) Predator induced phenotypic plasticity in the pinewoods tree frog, Hyla femoralis: necessary cues and the cost of development. Oecologia 138:350–359. doi:10.1007/s00442-003-1412-3

    Article  Google Scholar 

  • Lardner B (2000) Morphological and life history responses to predators in larvae of seven anurans. Oikos 88:169–180. doi:10.1034/j.1600-0706.2000.880119.x

    Article  Google Scholar 

  • Laurila A, Crochet P-A, Merila J (2001) Predation-induced effects on hatchling morphology in the common frog (Rana temporaria). Can J Zool 79:926–930. doi:10.1139/cjz-79-5-926

    Article  Google Scholar 

  • Laurila A, Pakkasmaa S, Crochet P-A, Merila J (2002) Predator-induced plasticity in early life history and morphology in two anuran amphibians. Oecologia 132:524–530. doi:10.1007/s00442-002-0984-7

    Article  Google Scholar 

  • Lefcort H, Meguire RA, Wilson LH, Ettinger WF (1998) Heavy metals alter the survival, growth, metamorphosis, and antipredatory behaviour of Columbia spotted frog (Rana luteiventris) tadpoles. Arch Environ Contam Toxicol 35:447–456. doi:10.1007/s002449900401

    Article  CAS  Google Scholar 

  • Lehman EM, Campbell CD (2007) Developmental window of response to predator chemical cues in rough-skinned newt embryos. Funct Ecol 21:880–885. doi:10.1111/j.1365-2435.2007.01296.x

    Article  Google Scholar 

  • Mandrillon A-L, Saglio P (2007a) Herbicide exposure affects the chemical recognition of a non native predator in common toad tadpoles (Bufo bufo). Chemoecology 17:31–36. doi:10.1007/s00049-006-0354-8

    Article  CAS  Google Scholar 

  • Mandrillon A-L, Saglio P (2007b) Waterborne amitrole affects the predator–prey relationship between common frog tadpoles (Rana temporaria) and larval spotted salamander (Salamandra salamandra). Arch Environ Contam Toxicol 53:233–240. doi:10.1007/s00244-006-0229-6

    Article  CAS  Google Scholar 

  • Marquis O, Saglio P, Neveu A (2004) Effects of predators and conspecific chemical cues on the swimming activity of Rana temporaria and Bufo bufo tadpoles. Arch Hydrobiol 160:153–170. doi:10.1127/0003-9136/2004/0160-0153

    Article  Google Scholar 

  • Manteifel YB, Zhushev AV (1996) Avoidance of predator chemical cues by tadpoles of four East European anuran species (Bufo bufo, Rana arvalis, R. lessonae, R. temporaria). Adv Amphibians Res Former Sov Union 1:161–180

    Google Scholar 

  • Mathis A, Murray KL, Hickman CR (2003) Do experience and body size play a role in responses of larval ringed salamanders, Ambystoma annulatum, to predator kairomones? Laboratory and field assays. Ethology 109:159–170. doi:10.1046/j.1439-0310.2003.00849.x

    Article  Google Scholar 

  • Mills NE, Semlitsch RD (2004) Competition and predation mediate the indirect effects of an insecticide on Southern leopard frogs. Ecol Appl 14:1041–1054. doi:10.1890/02-5134

    Article  Google Scholar 

  • Mirza RS, Ferrari MCO, Kiesecker JM, Chivers DP (2006) Responses of American toad tadpoles to predation cues: behavioural response thresholds, threat-sensitivity and aquired predation recognition. Behaviour 143:877–889. doi:10.1163/156853906778017926

    Article  Google Scholar 

  • Mohanty-Hejmady P, Dutta SK (1981) Effects of some pesticides on the development of the Indian bull frog Rana tigerina. Environ Pollut A 24:145–161. doi:10.1016/0143-1471(81)90076-3

    Article  Google Scholar 

  • Moore RD, Newton B, Sih A (1996) Delayed hatching as a response of streamside salamander eggs to chemical cues from predatory sunfish. Oikos 77:331–335. doi:10.2307/3546073

    Article  Google Scholar 

  • Nicieza AG (2000) Interacting effects of predation risk and food availability on larval anuran behaviour and development. Oecologia 123:497–505. doi:10.1007/s004420000343

    Article  Google Scholar 

  • Pauli BD, Coulson DR, Berrill M (1999) Sensitivity of amphibian embryos and tadpoles to Mimic® 240 LV insecticide following single or double exposures. Environ Toxicol Chem 18:2538–2544. doi :10.1897/1551-5028(1999)018<2538:SOAEAT>2.3.CO;2

    Article  CAS  Google Scholar 

  • Peacor SD (2006) Behavioural response of bullfrog tadpoles to chemical cues of predation risk are affected by cue age and water source. Hydrobiologia 573:39–44. doi:10.1007/s10750-006-0256-3

    Article  CAS  Google Scholar 

  • Raimondo SM, Rowe CL, Congdon JD (1998) Exposure to coal ash impacts swimming performance and predator avoidance in larval bullfogs (Rana catesbeiana). J Herpetol 32:289–292. doi:10.2307/1565313

    Article  Google Scholar 

  • Rajchard J (2006) Antipredator pheromones in amphibians: a review. Vet Med-Czech 51:409–413

    CAS  Google Scholar 

  • Relyea RA (2002a) Cost of phenotypic plasticity. Am Nat 159:272–282. doi:10.1086/338540

    Article  Google Scholar 

  • Relyea RA (2002b) Local population differences in phenotypic plasticity: predator-induced changes in wood frog tadpoles. Ecol Monogr 72:77–93

    Google Scholar 

  • Relyea RA (2002c) Competitor-induced plasticity in tadpoles: consequences, cues and connections to predator-induced plasticity. Ecol Monogr 72:523–540

    Article  Google Scholar 

  • Relyea RA (2003) Predator cues and pesticides: a double dose of danger for amphibians. Ecol Appl 13:1515–1521. doi:10.1890/02-5298

    Article  Google Scholar 

  • Relyea RA (2004) Synergistic impacts of malathion and predatory stress on six species of North American tadpoles. Environ Toxicol Chem 23:1080–1084. doi:10.1897/03-259

    Article  CAS  Google Scholar 

  • Relyea RA (2005) The lethal impacts of Roundup and predatory stress on six species of North American tadpoles. Arch Environ Contam Toxicol 48:351–357. doi:10.1007/s00244-004-0086-0

    Article  CAS  Google Scholar 

  • Relyea RA, Mills N (2001) Predator-induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles (Hyla versicolor). Proc Natl Acad Sci USA 98:2491–2496. doi:10.1073/pnas.031076198

    Article  CAS  Google Scholar 

  • Relyea RA, Werner EE (1999) Quantifying the relation between predator-induced behavior and growth performance in larval anurans. Ecology 80:2117–2124

    Google Scholar 

  • Rohlf FJ (1990) Morphometrics. Annu Rev Ecol Syst 21:299–316. doi:10.1146/annurev.es.21.110190.001503

    Article  Google Scholar 

  • Rohr JR, Elskus AA, Shepherd BS et al (2003) Lethal and sublethal effects of atrazine, carbaryl, endosulfan, and octylphenol on the streamside salamander (Ambystoma barbouri). Environ Toxicol Chem 22:2385–2392. doi:10.1897/02-528

    Article  CAS  Google Scholar 

  • Rohr JR, Elskus AA, Shepherd BS et al (2004) Multiple stressors and salamanders: effects of an herbicide, food limitation, and hydroperiod. Ecol Appl 14:1028–1040. doi:10.1890/03-5087

    Article  Google Scholar 

  • Saglio P, Mandrillon A-L (2006) Embryonic experience to predation risk affects tadpoles of the common frog (Rana temporaria). Arch Hydrobiol 166:505–523. doi:10.1127/0003-9136/2006/0166-0505

    Article  Google Scholar 

  • Schoeppner NM, Relyea RA (2005) Damage, digestion and defence: the roles of alarm cues and kairomones for inducing prey defences. Ecol Lett 8:505–512. doi:10.1111/j.1461-0248.2005.00744.x

    Article  Google Scholar 

  • Schuytema GS, Nebeker AV (1998) Comparative toxicity of Diuron on survival and growth of Pacific treefrog, bullfrog, red-legged frog, and African clawed frog embryos and tadpoles. Arch Environ Contam Toxicol 34:370–376. doi:10.1007/s002449900332

    Article  CAS  Google Scholar 

  • Schuytema GS, Nebeker AV, Griffis WL (1994) Toxicity of guthion® guthion® 2S to Xenopus laevis embryos. Arch Environ Contam Toxicol 27:250–255. doi:10.1007/BF00214270

    Article  CAS  Google Scholar 

  • Sih A, Moore RD (1993) Delayed hatching of salamander eggs in response to enhanced larval predation risk. Am Nat 142:947–960. doi:10.1086/285583

    Article  CAS  Google Scholar 

  • Skelly DR (1992) Field evidence for a cost of behavioral antipredator response in a larval amphibian. Ecology 73:704–708. doi:10.2307/1940779

    Article  Google Scholar 

  • Skelly DR, Werner EE (1990) Behavioral and life historical responses of larval American toads to an odonate predators. Ecology 71:2313–2322. doi:10.2307/1938642

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research. WH Freeman and Company, San Francisco

  • Steiner UK (2005) Cost of predator-induced plasticity and cost of responding to predators in tadpoles. PhD thesis, Zürich University

  • Steiner UK (2007) Investment in defense and cost of predator-induced defense along a resource gradient. Oecologia 152:201–210. doi:10.1007/s00442-006-0645-3

    Article  Google Scholar 

  • Teplitsky C, Piha H, Laurila A, Merilä J (2005a) Common pesticide increases costs of antipredator defenses in Rana temporaria tadpoles. Environ Sci Technol 39:6079–6085. doi:10.1021/es050127u

    Article  CAS  Google Scholar 

  • Teplitsky C, Plenet S, Lena JP, Mermet N, Malet E, Joly P (2005b) Escape behavior and ultimate causes of specific induced defences in an anuran tadpole. J Evolut Biol 18:180–190. doi:10.1111/j.1420-9101.2004.00790.x

    Article  CAS  Google Scholar 

  • Tomlin CDS (ed) (1997) The pesticide manual, 11th edn. British Crop Protection Council, Surrey, UK

  • Touchon JC, Gomez-Mestre I, Warkentin KM (2006) Hatching plasticity in two temperate anurans: responses to a pathogen and predation cues. Can J Zool 84:556–563. doi:10.1139/Z06-058

    Article  Google Scholar 

  • Van Buskirk J (2000) The costs of an inducible defense in anuran larvae. Ecology 81:2813–2821

    Article  Google Scholar 

  • Van Buskirk J (2002) Phenotypic lability and the evolution of predator-induced plasticity in tadpoles. Evolution 56:361–370

    Google Scholar 

  • Van Buskirk J, Anderwald P, Lüpold S, Reinhardt L, Schuler H (2003) The lure effect, tadpole tail shape, and the target of dragonfly strikes. J Herpetol 37:420–424

    Article  Google Scholar 

  • Van Buskirk J, Relyea RA (1998) Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biol J Linn Soc 65:301–328

    Article  Google Scholar 

  • Verrell P (2000) Methoxylor increases susceptibility to predation in the salamander Ambystoma macrodactylum. Bull Environ Contam Toxicol 64:85–92. doi:10.1007/s001289910014

    Article  CAS  Google Scholar 

  • Vismara C, Battista V, Vailati G, Bacchetta R (2000) Paraquat induced embryotoxicity on Xenopus laevis development. Aquat Toxicol 49:171–179. doi:10.1016/S0166-445X(99)00080-6

    Article  CAS  Google Scholar 

  • Vonesh JR (2005) Sequential predator effects across three life stages of the African tree frog Hyperolius spinigularis. Oecologia 143:280–290. doi:10.1007/s00442-004-1806-x

    Article  Google Scholar 

  • Warkentin KM (1995) Adaptive plasticity in hatching age: a response to predation risk trade-offs. Proc Natl Acad Sci USA 92:3507–3510. doi:10.1073/pnas.92.8.3507

    Article  CAS  Google Scholar 

  • Warkentin KM (2000) Wasp predation and wasp induced hatching of red-eyed treefrog eggs. Anim Behav 60:503–510. doi:10.1006/anbe.2000.1508

    Article  Google Scholar 

  • Watkins R (1996) Predator-mediated selection on burst swimming performance in tadpoles of the Pacific tree frog, Pseudacris regilla. Phys Biochem Zool 73:356–364. doi:10.1086/316744

    Article  Google Scholar 

  • Werner EE (1986) Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am Nat 128:319–341. doi:10.1086/284565

    Article  Google Scholar 

  • Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425. doi:10.1146/annurev.es.15.110184.002141

    Article  Google Scholar 

  • World Health Organisation (1994) Amitrole health and safety guide. International Program on Chemical Safety. Health and Safety Guide 85. World Health Organisation, Geneva

Download references

Acknowledgments

We thank A. Neveu and P.-M. Lucas for help in capturing the breeding frogs. The study was performed with a permit (006910) from the Regional Department of Veterinary Services. M.S.N. Carpenter postedited the English style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Saglio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandrillon, AL., Saglio, P. Effects of Single and Combined Embryonic Exposures to Herbicide and Conspecific Chemical Alarm Cues on Hatching and Larval Traits in the Common Frog (Rana temporaria). Arch Environ Contam Toxicol 56, 566–576 (2009). https://doi.org/10.1007/s00244-008-9196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9196-4

Keywords

Navigation