Skip to main content
Log in

Solid-Phase Control on Lead Bioaccessibility in Smelter-Impacted Soils

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The goal of this work was to identify the solid-phase control on lead (Pb) bioaccessibility in soils impacted by smelter activities in the city of San Luis Potosi, in north-central Mexico. Total Pb concentrations in 30 ha of soil terrain from a residential area adjacent to the smelter showed levels above the 400-mg/kg intervention guideline dictated by Mexican Environmental regulations. These concentrations, although raising human health and environmental concerns, showed low water-soluble lead (<0.1 mg/L) and relatively low lead bioaccessibility (2.4–20.5%). X-ray diffraction and electron microscopy techniques showed, in addition to common Pb phases reported in similar contaminated environments [galena (PbS) and anglesite (PbSO4)], the presence of a solid lead arsenate phase. The Pb solubility measured in soils agrees very well with the low solubility reported for the Pb minerals identified and explains the relatively low Pb bioaccessibility values measured, presumably from their low dissolution during passage through the gastrointestinal tract. The results reported are highly relevant for smelter-originated environmental contamination scenarios in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andra SS, Sarkar D, Datta R, Saminathan S (2006) Lead in soils in paint contaminated residential sites at San Antonio, Texas, and Baltimore, Maryland. Bull Environ Contam Toxicol 77:643–650

    Article  CAS  Google Scholar 

  • ASTM (1985) Standard test method for shake extraction of solid waste with water. American Society for Testing and Materials, Designation D 3987–85:14–17

    Google Scholar 

  • Bataillard P, Cambier P, Picot C (2003) Short-term transformations of lead and cadmium compounds in soil after contamination. Eur J Soil Sci 54:365–376

    Article  CAS  Google Scholar 

  • Batres L, Carrizales L, Calderon J, Diaz-Barriga F (1995) Participación del barro vidriado en la exposición infantil al plomo en una comunidad industrial expuesta ambientalmente a este metal. In: Mauricio Hernandez Avila, Eduardo Palazuelos Rincon (eds) Intoxicación por plomo en México: Prevención y Control. Instituto Nacional de Salud Pública y Departamento del Distrito Federal, México D.F., p 175

  • Bruce S, Noller B, Matanitobua V, Ng J (2007) In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials. J Toxicol Environ Health A 70:1700–1711

    Article  CAS  Google Scholar 

  • Bouyoucos GJ (1955) Hydrometer method improved for making particle size analysis of soil. Agric J 54:3

    Google Scholar 

  • Calderon J, Navarro ME, Jimenez-Capdeville ME et al (2001) Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85:69–76

    Article  CAS  Google Scholar 

  • Carrizales L, Razo I, Téllez-Hernández JI et al (2006) Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children. Environ Res 101:1–10

    Article  CAS  Google Scholar 

  • CDC (1991) Preventing lead poisoning in young children. US Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA

    Google Scholar 

  • Davis A, Drexler JW, Ruby V, Nicholson A (1993) Micromineralogy of mine wastes in relation to lead bioavailability, Butte, Montana. Environ Sci Technol 27:1415–1425

    Article  CAS  Google Scholar 

  • Drexler JW, Brattin WJ (2007) An in vitro procedure for estimation of lead relative bioavailability: With validation. Hum Ecol Risk Assess 13:383–401

    Article  CAS  Google Scholar 

  • Díaz-Barriga F, Batres L, Carrizalez L et al (1993) Caracterización del riesgo en salud por la exposición a metales pesados en la ciudad de San Luís Potosí. Informe técnico. Facultad de Medicina de la Universidad Autónoma de San Luís Potosí, Mexico

    Google Scholar 

  • Ettler V, Baroonet A, Jankovsky F et al (2005a) Mineralogy of air-pollution-control residues from a secondary lead smelter: Environmental implications. Environ Sci Technol 39:9309–9316

    Article  CAS  Google Scholar 

  • Ettler V, Vanek A, Mihaljevic M, Bezdicka P (2005b) Contrasting lead speciation in forest and tilled soils heavily polluted by lead metallurgy. Chemosphere 58:1449–1459

    Article  CAS  Google Scholar 

  • Ettler V, Rohovec J, Navrátil T, Mihaljevic M (2007) Mercury distribution in soil profiles polluted by lead smelting. Bull Environ Contam Toxicol 78:12–16

    Article  CAS  Google Scholar 

  • Freeman GB, Johnson JD, Killinger JM et al (1992) Relative bioavailability of lead from mining waste soil in rats. Fundam Appl Toxicol 19(3):388–398

    Article  CAS  Google Scholar 

  • Gonzalez de Mejia E, Craigmill AL (1996) Transfer of lead from lead-glazed ceramics to food. Arch Environ Contam Toxicol 31:581–584

    Article  CAS  Google Scholar 

  • Gutiérrez-Ruíz M, Villalobos M, Romero FM, Fernández-Lomelín P (2005) Natural attenuation of arsenic in semiarid soils contaminated by oxidized As wastes. In: O’Day PA, Vlassopoulos D, Meng X, Benning LG (eds) Advances in arsenic research. American Chemical Society Symposium Series 915, Washington, DC, p 235

    Google Scholar 

  • Hesse PR (1971) A textbook of soil chemical analysis. Murray, London

    Google Scholar 

  • Magalhaes MCF, Silva MC (2003) Stability of lead (II) arsenates. Monatsh Chem 134:735–743

    CAS  Google Scholar 

  • Morin G, Juillot F, Ildfonse P et al (2001) Mineralogy of lead in a soil developed on a Pb-mineralized sandstone (Largentiere, France). Am Mineral 86:92–104

    CAS  Google Scholar 

  • Roussel C, Neel C, Bril H (2000) Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Sci Total Environ 263:209–219

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Link TE et al (1993) Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environ Sci Technol 27:2870–2877

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422–430

    Article  CAS  Google Scholar 

  • Ruby MV, Schoof R, Brattin W et al (1999) Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33:3697–3705

    Article  CAS  Google Scholar 

  • SEMARNAT (2004) Norma Oficial Mexicana que establece los criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Secretaría de Medio Ambiente y Recursos Naturales, Diario Oficial de la Federación, México

    Google Scholar 

  • Tunstall S, Amarasiriwardena D (2002) Characterization of lead and lead leaching properties of lead glazed ceramics from the Solis Valley, Mexico, using inductively coupled plasma-mass spectrometry (ICP-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). Microcheml J 73:335–347

    Article  CAS  Google Scholar 

  • US EPA (1994) Test methods for evaluating solid wastes. Physical/chemical methods. SW-846 manual. EPA Method 3051: Microwave assisted acid digestion of sediments, sludges, soils and oils. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US EPA (1995) Test methods for evaluating solid wastes. Physical/chemical methods. SW-846 manual. EPA Method 9045C. Soil and waste pH. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US EPA (1996) Test methods for evaluating solid wastes. Physical/chemical methods. SW-846 manual. EPA Method 6010B: Inductively coupled plasma atomic emission spectroscopy. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US EPA (2000) Ecological soil screening level guidance. United States Environmental Protection Agency Office of Emergency and Remedial Response, Washington DC

    Google Scholar 

  • Walkley A, Black IA (1932) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Industrial Minera México (IMMSA) for their financial and logistic support and to M. Monroy (Instituto de Metalurgia, Universidad de San Luis Potosí) for his help in the bioaccessibility analyses. We acknowledge C. Linares (Instituto de Geofísica, UNAM), I. Puente Lee, and C. Salcedo (Facultad de Química, UNAM) for technical aid in electron microscope measurements and XRD analyses, respectively. Finally, we are thankful for the comments of two anonymous reviewers who helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, F.M., Villalobos, M., Aguirre, R. et al. Solid-Phase Control on Lead Bioaccessibility in Smelter-Impacted Soils. Arch Environ Contam Toxicol 55, 566–575 (2008). https://doi.org/10.1007/s00244-008-9152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9152-3

Keywords

Navigation