Skip to main content
Log in

Analyzing global research trends and focal points in the utilization of laser techniques for the treatment of urolithiasis from 1978 to 2022: visualization and bibliometric analysis

  • Research
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Laser lithotripsy is gaining global prominence and is a dynamically progressing field marked by a continual influx of new and comprehensive research each year. Recently, there has been a noticeable shift toward the adoption of various kinds of lasers, such as holmium: yttrium–aluminum-garnet (Ho:YAG) and thulium fiber (TFL) lasers. Consequently, we aim to conduct a bibliometric analysis to analyze key areas of research activity within scientific publications that center on the utilization of laser techniques in urolithiasis. A search of the literature spanning from 1978 to 2022 was carried out on 25 December 2023 using the Scopus database to explore research related to the application of laser techniques for urolithiasis treatment. Visualization analysis was performed using VOSviewer software (version 1.6.20). We examined 962 publications that met the specified criteria, 791 (82.22%) of which were original articles. The analysis of the retrieved publications indicated a consistent increase in research output from 1978 to 2022; a particularly noteworthy surge occurred after 2003. In particular, the U.S. claimed the leading position as the most productive country, contributing 211 articles (21.93%). However, India had the highest research productivity according to the adjustment index of 19.08. In the European region, 324 publications (33.68% of the total) originated from 25 countries. The Journal of Endourology contributed the most between 1978 and 2022 (n = 96, 9.98%). The most cited paper examined the effectiveness of holmium: yttrium–aluminum-garnet (Ho:YAG) lasers, while a subsequent study focused on the use of a thulium fiber laser (TFL), an emerging laser technology that has gained increased recognition. Co-occurrence analysis revealed three distinct clusters focusing on the types of laser technology, minimally invasive approaches, and success rate/postoperative complications. This comprehensive investigation delves into the global landscape of laser use for the treatment of urolithiasis. This review supports the emerging clinical concept of using various types of laser technology for urolithiasis treatment. Moreover, the hot issues that researchers should focus on based on the findings of this study are the use of different types of laser lithotripsy in view of the surgical approach, success rate and complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available upon request from the corresponding authors.

Abbreviations

MeSH:

Medical subject headings

IF:

Impact factor

JCR:

Journal citation report

PCNL:

Percutaneous nephrolithotomy

RIRS:

Retrograde intrarenal surgery

ESWL:

Extracorporeal shock wave lithotripsy

AUA:

The American Urological Association

EAU:

The European Association of Urology

SFR:

Stone free rate

FURS:

Flexible ureteroscopy

TFL:

Thulium fiber laser

Ho:YAG:

Holmium: yttrium–aluminum-garnet

References

  1. De S, Autorino R, Kim FJ, Zargar H, Laydner H, Balsamo R, Torricelli FC, Di Palma C, Molina WR, Monga M et al (2015) Percutaneous nephrolithotomy versus retrograde intrarenal surgery: a systematic review and meta-analysis. Eur Urol 67(1):125–137

    Article  PubMed  Google Scholar 

  2. Dorantes-Carrillo LA, Basulto-Martínez M, Suárez-Ibarrola R, Heinze A, Proietti S, Flores-Tapia JP, Esqueda-Mendoza A, Giusti G (2022) Retrograde intrarenal surgery versus miniaturized percutaneous nephrolithotomy for kidney stones >1cm: a systematic review and meta-analysis of randomized trials. Eur Urol Focus 8(1):259–270

    Article  PubMed  Google Scholar 

  3. Zhang W, Zhou T, Wu T, Gao X, Peng Y, Xu C, Chen Q, Song R, Sun Y (2015) Retrograde intrarenal surgery versus percutaneous nephrolithotomy versus extracorporeal shockwave lithotripsy for treatment of lower pole renal stones: a meta-analysis and systematic review. J Endourol 29(7):745–759

    Article  PubMed  Google Scholar 

  4. Assimos D, Krambeck A, Miller NL, Monga M, Murad MH, Nelson CP, Pace KT, Pais VM Jr, Pearle MS, Preminger GM et al (2016) Surgical management of stones: american urological association/endourological society guideline. PART I J Urol 196(4):1153–1160

    Article  PubMed  Google Scholar 

  5. Zeng G, Cai C, Duan X, Xu X, Mao H, Li X, Nie Y, Xie J, Li J, Lu J et al (2021) Mini percutaneous nephrolithotomy is a noninferior modality to standard percutaneous nephrolithotomy for the management of 20–40mm renal calculi: a multicenter randomized controlled trial. Eur Urol 79(1):114–121

    Article  PubMed  Google Scholar 

  6. Wu T, Duan X, Chen S, Yang X, Tang T, Cui S (2017) Ureteroscopic lithotripsy versus laparoscopic ureterolithotomy or percutaneous nephrolithotomy in the management of large proximal ureteral stones: a systematic review and meta-analysis. Urol Int 99(3):308–319

    Article  PubMed  Google Scholar 

  7. Wendt-Nordahl G, Mut T, Krombach P, Michel MS, Knoll T (2011) Do new generation flexible ureterorenoscopes offer a higher treatment success than their predecessors? Urol Res 39(3):185–188

    Article  PubMed  Google Scholar 

  8. Geraghty R, Abourmarzouk O, Rai B, Biyani CS, Rukin NJ, Somani BK (2015) Evidence for ureterorenoscopy and laser fragmentation (ursl) for large renal stones in the modern era. Curr Urol Rep 16(8):54

    Article  PubMed  Google Scholar 

  9. Uleri A, Farré A, Izquierdo P, Angerri O, Kanashiro A, Balaña J, Gauhar V, Castellani D, Sanchez-Martin F, Monga M et al (2024) Thulium fiber laser versus holmium: yttrium aluminum garnet for lithotripsy: a systematic review and meta-analysis. Eur Urol. https://doi.org/10.1016/j.eururo.2024.01.011

    Article  PubMed  Google Scholar 

  10. Leijte JA, Oddens JR, Lock TM (2008) Holmium laser lithotripsy for ureteral calculi: predictive factors for complications and success. J Endourol 22(2):257–260

    Article  PubMed  Google Scholar 

  11. Kronenberg P, Hameed BZ, Somani B (2021) Outcomes of thulium fibre laser for treatment of urinary tract stones: results of a systematic review. Curr Opin Urol 31(2):80–86

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ulvik Ø, Æsøy MS, Juliebø-Jones P, Gjengstø P, Beisland C (2022) Thulium fibre laser versus holmium:yag for ureteroscopic lithotripsy: outcomes from a prospective randomised clinical trial. Eur Urol 82(1):73–79

    Article  PubMed  Google Scholar 

  13. Hardy LA, Vinnichenko V, Fried NM (2019) High power holmium:YAG versus thulium fiber laser treatment of kidney stones in dusting mode: ablation rate and fragment size studies. Lasers Surg Med 51(6):522–530

    Article  PubMed  Google Scholar 

  14. Jiang P, Okhunov Z, Afyouni AS, Ali S, Hosseini Sharifi SH, Bhatt R, Brevik A, Ayad M, Larson K, Osann K et al (2023) Comparison of superpulse thulium fiber laser vs holmium laser for ablation of renal calculi in an in vivo porcine model. J Endourol 37(3):335–340

    Article  PubMed  Google Scholar 

  15. Xu Y, Min Z, Wan SP, Nie H, Duan G (2018) Complications of retrograde intrarenal surgery classified by the modified Clavien grading system. Urolithiasis 46(2):197–202

    Article  PubMed  Google Scholar 

  16. Kadlec AO, Greco KA, Fridirici ZC, Hart ST, Vellos TG, Turk TM (2013) Comparison of complication rates for unilateral and bilateral percutaneous nephrolithotomy (PCNL) using a modified Clavien grading system. BJU Int. https://doi.org/10.1111/j.1464-410X.2012.11589.x

    Article  PubMed  Google Scholar 

  17. Geavlete P, Georgescu D, Niţă G, Mirciulescu V, Cauni V (2006) Complications of 2735 retrograde semirigid ureteroscopy procedures: a single-center experience. J Endourol 20(3):179–185

    Article  PubMed  Google Scholar 

  18. Bhojani N, Miller LE, Bhattacharyya S, Cutone B, Chew BH (2021) Risk factors for urosepsis after ureteroscopy for stone disease: a systematic review with meta-analysis. J Endourol 35(7):991–1000

    Article  PubMed  Google Scholar 

  19. Seitz C, Desai M, Häcker A, Hakenberg OW, Liatsikos E, Nagele U, Tolley D (2012) Incidence, prevention, and management of complications following percutaneous nephrolitholapaxy. Eur Urol 61(1):146–158

    Article  PubMed  Google Scholar 

  20. Geraghty RM, Jones P, Somani BK (2017) Worldwide trends of urinary stone disease treatment over the last two decades: a systematic review. J Endourol 31(6):547–556

    Article  PubMed  Google Scholar 

  21. Pietropaolo A, Proietti S, Geraghty R, Skolarikos A, Papatsoris A, Liatsikos E, Somani BK (2017) Trends of “urolithiasis: interventions, simulation, and laser technology” over the last 16 years (2000–2015) as published in the literature (PubMed): a systematic review from European section of Uro-technology (ESUT). World J Urol 35(11):1651–1658

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pietropaolo A, Proietti S, Jones P, Rangarajan K, Aboumarzouk O, Giusti G, Somani BK (2017) Trends of intervention for paediatric stone disease over the last two decades (2000–2015): a systematic review of literature. Arab J Urol 15(4):306–311

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ellegaard O, Wallin JA (2015) The bibliometric analysis of scholarly production: how great is the impact? Scientometrics 105(3):1809–1831

    Article  PubMed  PubMed Central  Google Scholar 

  24. Montazeri A, Mohammadi S (2023) P MH, Ghaemi M, Riazi H, Sheikhi-Mobarakeh Z: Preliminary guideline for reporting bibliometric reviews of the biomedical literature (BIBLIO): a minimum requirements. Syst Rev 12(1):239

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thompson DF, Walker CK (2015) A descriptive and historical review of bibliometrics with applications to medical sciences. Pharmacotherapy 35(6):551–559

    Article  PubMed  Google Scholar 

  26. Morante-Carballo F, Montalván-Burbano N, Quiñonez-Barzola X, Jaya-Montalvo M, Carrión-Mero P (2022) What do we know about water scarcity in semi-arid zones? a global analysis and research trends. Water 14(17):2685

    Article  Google Scholar 

  27. Guo K, Li J, Li X, Huang J, Zhou Z (2023) Emerging trends and focus on the link between gut microbiota and type 1 diabetes: a bibliometric and visualization analysis. Front Microbiol 14:1137595

    Article  PubMed  PubMed Central  Google Scholar 

  28. Al-Jabi SW (2021) Current global research landscape on COVID-19 and depressive disorders: bibliometric and visualization analysis. World J Psychiatry 11(6):253–264

    Article  PubMed  PubMed Central  Google Scholar 

  29. Al-Jabi SW (2017) Global trends in aspirin resistance-related research from 1990 to 2015: a bibliometric analysis. Basic Clin Pharmacol Toxicol 121(6):512–519

    Article  CAS  PubMed  Google Scholar 

  30. Giles ED, Purcell SA, Olson J, Vrieling A, Hirko KA, Woodruff K, Playdon MC, Thomas GA, Gilmore LA, Moberly HK et al (2023) Trends in diet and cancer research: a bibliometric and visualization analysis. Cancers (Basel). https://doi.org/10.3390/cancers15153761

    Article  PubMed  Google Scholar 

  31. Yang J, Wu J, Han T, Lu H, Li F, Li L, Su S, Jiang P, Hou Z (2023) Global research hotspots and frontiers of myasthenia gravis from 2002 to 2021: a bibliometric study. Medicine (Baltimore) 102(24):e34002

    Article  PubMed  Google Scholar 

  32. SeH Z, Abushamma F, Salameh H, Abushanab AS, Koni A, Abu Taha A, Al-Jabi SW, Shahwan M, Jairoun AA, Shakhshir MH (2024) Exploring the nutritional landscape and emerging trends in kidney stone research: visualization and bibliometric analysis. Transl Med Commun. https://doi.org/10.1186/s41231-024-00168-w

    Article  Google Scholar 

  33. Heilmann C, Blümle A (2015) Systematic reviews and meta-analyses: black boxes of medical literature? Eur J Cardiothorac Surg 48(6):807–808

    PubMed  Google Scholar 

  34. Møller AM, Myles PS (2016) What makes a good systematic review and meta-analysis? Br J Anaesth 117(4):428–430

    Article  PubMed  Google Scholar 

  35. Neely JG, Magit AE, Rich JT, Voelker CC, Wang EW, Paniello RC, Nussenbaum B, Bradley JP (2010) A practical guide to understanding systematic reviews and meta-analyses. Otolaryngol Head Neck Surg 142(1):6–14

    Article  PubMed  Google Scholar 

  36. O’Gorman CS, Macken AP, Cullen W, Saunders J, Dunne C, Higgins MF (2013) What are the differences between a literature search, a literature review, a systematic review and a meta-analysis? and why is a systematic review considered to be so good? Ir Med J 106(2 Suppl):8–10

    CAS  PubMed  Google Scholar 

  37. Khalil H, Peters M, Godfrey CM, McInerney P, Soares CB, Parker D (2016) An evidence-based approach to scoping reviews. Worldviews Evid Based Nurs 13(2):118–123

    Article  PubMed  Google Scholar 

  38. Tricco AC, Lillie E, Zarin W, O’Brien K, Colquhoun H, Kastner M, Levac D, Ng C, Sharpe JP, Wilson K et al (2016) A scoping review on the conduct and reporting of scoping reviews. BMC Med Res Methodol 16:15

    Article  PubMed  PubMed Central  Google Scholar 

  39. Grant MJ, Booth A (2009) A typology of reviews: an analysis of 14 review types and associated methodologies. Health Info Libr J 26(2):91–108

    Article  PubMed  Google Scholar 

  40. Wallin JA (2005) Bibliometric methods: pitfalls and possibilities. Basic Clin Pharmacol Toxicol 97(5):261–275

    Article  CAS  PubMed  Google Scholar 

  41. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G (2008) Comparison of pubmed, scopus, web of science, and google scholar: strengths and weaknesses. FASEB J 22(2):338–342

    Article  CAS  PubMed  Google Scholar 

  42. AlRyalat SAS, Malkawi LW, Momani SM (2019) Comparing bibliometric analysis using pubmed, scopus, and web of science databases. J Vis Exp. https://doi.org/10.3791/58494-v

    Article  PubMed  Google Scholar 

  43. Anker MS, Hadzibegovic S, Lena A, Haverkamp W (2019) The difference in referencing in web of science, scopus, and google Scholar. ESC Heart Fail 6(6):1291–1312

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bakkalbasi N, Bauer K, Glover J, Wang L (2006) Three options for citation tracking: google scholar, scopus and web of science. Biomed Digit Libr 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kulkarni AV, Aziz B, Shams I, Busse JW (2009) Comparisons of citations in web of science, scopus, and google scholar for articles published in general medical journals. JAMA 302(10):1092–1096

    Article  CAS  PubMed  Google Scholar 

  46. Abedi AR, Razzaghi M, Montazeri S, Allameh F (2021) The trends of urolithiasis therapeutic interventions over the last 20 years: a bibliographic study. J Lasers Med Sci 12:e14

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yuan T, Xia Y, Li B, Yu W, Rao T, Ye Z, Yan X, Song B, Li L, Lin F et al (2023) Gut microbiota in patients with kidney stones: a systematic review and meta-analysis. BMC Microbiol 23(1):143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aune D, Mahamat-Saleh Y, Norat T, Riboli E (2018) Body fatness, diabetes, physical activity and risk of kidney stones: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol 33(11):1033–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carbone A, Al Salhi Y, Tasca A, Palleschi G, Fuschi A, De Nunzio C, Bozzini G, Mazzaferro S, Pastore AL (2018) Obesity and kidney stone disease: a systematic review. Minerva Urol Nefrol 70(4):393–400

    Article  PubMed  Google Scholar 

  50. Thongprayoon C, Cheungpasitporn W, Vijayvargiya P, Anthanont P, Erickson SB (2016) The risk of kidney stones following bariatric surgery: a systematic review and meta-analysis. Ren Fail 38(3):424–430

    Article  PubMed  Google Scholar 

  51. Zhao J, Huang Y, Yu X (2022) Caffeine intake and the risk of incident kidney stones: a systematic review and meta-analysis. Int Urol Nephrol 54(10):2457–2466

    Article  CAS  PubMed  Google Scholar 

  52. Kronenberg P, Somani B (2018) Advances in lasers for the treatment of stones-a systematic review. Curr Urol Rep 19(6):45

    Article  PubMed  PubMed Central  Google Scholar 

  53. Aldoukhi AH, Black KM, Ghani KR (2019) Emerging laser techniques for the management of stones. Urol Clin North Am 46(2):193–205

    Article  PubMed  Google Scholar 

  54. Zyoud SH, Abushamma F, Salameh H, Abushanab AS, Koni A, Abu Taha A, Al-Jabi SW, Shahwan M, Jairoun AA, Shakhshir MH (2024) Exploring the nutritional landscape and emerging trends in kidney stone research: visualization and bibliometric analysis. Transl Med Commun. https://doi.org/10.1186/s41231-41024-00168-w

    Article  Google Scholar 

  55. van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538

    Article  PubMed  Google Scholar 

  56. van Eck NJ, Waltman L (2017) Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 111(2):1053–1070

    Article  PubMed  PubMed Central  Google Scholar 

  57. Trinarningsih W, Anugerah AR, Muttaqin PS (2021) Visualizing and mapping two decades of literature on board of directors research: a bibliometric analysis from 2000 to 2021. Cogent Bus Manag 8(1):1994104

    Article  Google Scholar 

  58. Sweileh WM (2022) Bibliometric analysis of COVID-19 research publications in pharmacy practice journals. J Pharm Health Serv Res 13(3):198–207

    Article  Google Scholar 

  59. Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM (2017) Global cocaine intoxication research trends during 1975–2015: a bibliometric analysis of web of science publications. Subst Abuse Treat Prev Policy 12(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  60. Karasneh RA, Al-Azzam SI, Alzoubi KH, Hawamdeh SS, Sweileh WM (2022) Global research trends of health-related publications on ramadan fasting from 1999 to 2021: a bibliometric analysis. J Relig Health 61(5):3777–3794

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sweileh WM (2021) Substandard and falsified medical products: bibliometric analysis and mapping of scientific research. Global Health 17(1):114

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sweileh WM (2022) Global research activity on mathematical modeling of transmission and control of 23 selected infectious disease outbreak. Global Health 18(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sweileh WM (2021) Bibliometric analysis of peer-reviewed literature on antimicrobial stewardship from 1990 to 2019. Global Health 17(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zyoud SH (2024) Global landscape of COVID-19 research: a visualization analysis of randomized clinical trials. Clin Exp Med 24(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zyoud SH (2024) Mapping the landscape of research on insulin resistance: a visualization analysis of randomized clinical trials. J Health Popul Nutr 43(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  66. World Bank Group. Countries and Economies 2012. 2013. http://data.worldbank.org/country (accessed November 25 2013).

  67. Sweileh WM, Zyoud SH, Sawalha AF, Abu-Taha A, Hussein A, Al-Jabi SW (2013) Medical and biomedical research productivity from Palestine, 2002–2011. BMC Res Notes 6:41

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zyoud SH, Al-Jabi SW, Sweileh WM (2015) Worldwide research productivity of paracetamol (acetaminophen) poisoning: a bibliometric analysis (2003–2012). Hum Exp Toxicol 34(1):12–23

    Article  CAS  PubMed  Google Scholar 

  69. Chan KF, Vassar GJ, Pfefer TJ, Teichman JM, Glickman RD, Weintraub ST, Welch AJ (1999) Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi. Lasers Surg Med 25(1):22–37

    Article  CAS  PubMed  Google Scholar 

  70. Grasso M, Conlin M, Bagley D (1998) Retrograde ureteropyeloscopic treatment of 2 cm or greater upper urinary tract and minor staghorn calculi. J Urol. https://doi.org/10.1016/S0022-5347(01)62892-1

    Article  PubMed  Google Scholar 

  71. Hyams ES, Munver R, Bird VG, Uberoi J, Shah O (2010) Flexible ureterorenoscopy and holmium laser lithotripsy for the management of renal stone burdens that measure 2 to 3 cm: a multi-institutional experience. J Endourol 24(10):1583–1588

    Article  PubMed  Google Scholar 

  72. Lam JS, Greene TD, Gupta M (2002) Treatment of proximal ureteral calculi: holmium:YAG laser ureterolithotripsy versus extracorporeal shock wave lithotripsy. J Urol 167(5):1972–1976

    Article  PubMed  Google Scholar 

  73. Mishra S, Sharma R, Garg C, Kurien A, Sabnis R, Desai M (2011) Prospective comparative study of miniperc and standard PNL for treatment of 1 to 2 cm size renal stone. BJU Int. https://doi.org/10.1111/j.1464-410X.2010.09936.x

    Article  PubMed  Google Scholar 

  74. Perez Castro E, Osther PJ, Jinga V, Razvi H, Stravodimos KG, Parikh K, Kural AR, de la Rosette JJ (2014) Differences in ureteroscopic stone treatment and outcomes for distal, mid-, proximal, or multiple ureteral locations: the Clinical Research Office of the Endourological Society ureteroscopy global study. Eur Urol 66(1):102–109

    Article  PubMed  Google Scholar 

  75. Sofer M, Watterson JD, Wollin TA, Nott L, Razvi H, Denstedt JD (2002) Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients. J Urol 167(1):31–34

    Article  PubMed  Google Scholar 

  76. Tawfiek ER, Bagley DH (1999) Management of upper urinary tract calculi with ureteroscopic techniques. Urology 53(1):25–31

    Article  CAS  PubMed  Google Scholar 

  77. Traxer O, Keller EX (2020) Thulium fiber laser: the new player for kidney stone treatment? a comparison with Holmium:YAG laser. World J Urol 38(8):1883–1894

    Article  CAS  PubMed  Google Scholar 

  78. Watson G, Murray S, Dretler SP, Parrish JA (1987) The pulsed dye laser for fragmenting urinary calculi. J Urol 138(1):195–198

    Article  CAS  PubMed  Google Scholar 

  79. Sabnis RB, Ganesamoni R, Doshi A, Ganpule AP, Jagtap J, Desai MR (2013) Micropercutaneous nephrolithotomy (microperc) vs retrograde intrarenal surgery for the management of small renal calculi: a randomized controlled trial. BJU Int 112(3):355–361

    Article  PubMed  Google Scholar 

  80. Kronenberg P, Traxer O (2015) Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers. World J Urol 33(4):463–469

    Article  PubMed  Google Scholar 

  81. Tzelves L, Somani B, Berdempes M, Markopoulos T, Skolarikos A (2021) Basic and advanced technological evolution of laser lithotripsy over the past decade: an educational review by the European Society of Urotechnology Section of the European Association of Urology. Turk J Urol 47(3):183–192

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kronenberg P, Traxer O (2019) The laser of the future: reality and expectations about the new thulium fiber laser-a systematic review. Transl Androl Urol 8(Suppl 4):S398-s417

    Article  PubMed  PubMed Central  Google Scholar 

  83. Traxer O, Corrales M (2022) New lasers for stone treatment. Urol Clin North Am 49(1):1–10

    Article  PubMed  Google Scholar 

  84. Kronenberg P, Cerrato C, Juliebø-Jones P, Herrmann T, Tokas T, Somani BK (2023) Advances in lasers for the minimally invasive treatment of upper and lower urinary tract conditions: a systematic review. World J Urol 41(12):3817–3827

    Article  PubMed  Google Scholar 

  85. Jacob BA, Lefgren L (2011) The Impact of research grant funding on scientific productivity. J Public Econ 95(9–10):1168–1177

    Article  PubMed  PubMed Central  Google Scholar 

  86. Neema S, Chandrashekar L (2021) Research funding-why, when, and how? Indian Dermatol Online J 12(1):134–138

    Article  PubMed  PubMed Central  Google Scholar 

  87. Philipson L (2005) Medical research activities, funding, and creativity in Europe: comparison with research in the United States. JAMA 294(11):1394–1398

    Article  CAS  PubMed  Google Scholar 

  88. Fontanarosa PB, DeAngelis CD, Hunt N (2005) Medical research–state of the science. JAMA 294(11):1424–1425

    Article  CAS  PubMed  Google Scholar 

  89. Cech TR (2005) Fostering innovation and discovery in biomedical research. JAMA 294(11):1390–1393

    Article  CAS  PubMed  Google Scholar 

  90. Fox RJ (2006) Translational and clinical science. N Engl J Med. https://doi.org/10.1056/NEJMc053105

    Article  PubMed  Google Scholar 

  91. Hill WG (2015) New impetus for innovation in benign urology. Am J Physiol Renal Physiol 308(8):F797-798

    Article  CAS  PubMed  Google Scholar 

  92. Wilkinson JM (2006) Technology transfer: seeking a more efficient way. Med Device Technol. https://doi.org/10.1152/ajprenal.00021.2015

    Article  PubMed  Google Scholar 

  93. Zerhouni EA (2005) US biomedical research: basic, translational, and clinical sciences. JAMA 294(11):1352–1358

    Article  CAS  PubMed  Google Scholar 

  94. Zerhouni EA (2007) Translational research: moving discovery to practice. Clin Pharmacol Ther 81(1):126–128

    Article  CAS  PubMed  Google Scholar 

  95. Sorokin I, Mamoulakis C, Miyazawa K, Rodgers A, Talati J, Lotan Y (2017) Epidemiology of stone disease across the world. World J Urol 35(9):1301–1320

    Article  PubMed  Google Scholar 

  96. Borghi L, Ferretti PP, Elia GF, Amato F, Melloni E, Trapassi MR, Novarini A (1990) Epidemiological study of urinary tract stones in a northern Italian city. Br J Urol 65(3):231–235

    Article  CAS  PubMed  Google Scholar 

  97. Yildirim K, Olcucu MT, Colak ME (2018) Trends in the treatment of urinary stone disease in Turkey. PeerJ 6:e5390

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang Q, Wang Y, Yang C, Wang J, Shi Y, Wang H, Zhang L, Zhao M-H (2023) Trends of urolithiasis in china: a national study based on hospitalized patients from 2013 to 2018. Kidney Diseases 9(1):49–57

    Article  CAS  PubMed  Google Scholar 

  99. Jiang Y, Zhang J, Kang N, Niu Y, Li Z, Yu C, Zhang J (2021) Current trends in percutaneous nephrolithotomy in china: a spot Survey. Risk Manag Healthc Policy 14:2507–2515

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lu P, Chen K, Wang Z, Song R, Zhang J, Liu B, Zeng G, Wang Z, Zhang W, Gu M (2020) Clinical efficacy and safety of flexible ureteroscopic lithotripsy using 365 μm holmium laser for nephrolithiasis: a prospective, randomized, controlled trial. World J Urol 38(2):481–487

    Article  PubMed  Google Scholar 

  101. Tangal S, Sancı A, Baklacı U, Babayiğit M, Karaburun MC, Kubilay E, Gökce M (2020) What is the optimum lithotripsy method for high density stones during mini-PNL? laser, ballistic or combination of both. Lasers Med Sci 35(8):1765–1768

    Article  PubMed  Google Scholar 

  102. Setthawong V, Srisubat A, Potisat S, Lojanapiwat B, Pattanittum P (2023) Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD007044.pub4

    Article  PubMed  Google Scholar 

  103. Nagele U, Tokas T, Traxer O (2020) Future of kidney stone surgery: will we treat small stones with large-sized PCNL and big stones with RIRS? World J Urol 38(12):3291–3292

    Article  CAS  PubMed  Google Scholar 

  104. Yuan Y, Liang YN, Li KF, Ho YR, Wu QL, Zhao Z (2023) A meta-analysis: retrograde intrarenal surgery vs percutaneous nephrolithotomy in children. Front Pediatr. https://doi.org/10.3389/fped.2023.1086345

    Article  PubMed  PubMed Central  Google Scholar 

  105. Soderberg L, Ergun O, Ding M, Parker R, Borofsky M, Pais V, Dahm P (2023) Percutaneous nephrolithotomy vs retrograde intrarenal surgery for renal stones: a cochrane review. BJU Int. https://doi.org/10.1002/14651858.CD013445.pub2

    Article  PubMed  Google Scholar 

  106. Binbay M, Yuruk E, Akman T, Ozgor F, Seyrek M, Ozkuvanci U, Berberoglu Y, Muslumanoglu AY (2010) Is there a difference in outcomes between digital and fiberoptic flexible ureterorenoscopy procedures? J Endourol 24(12):1929–1934

    Article  PubMed  Google Scholar 

  107. Ganesamoni R, Sabnis RB, Mishra S, Parekh N, Ganpule A, Vyas JB, Jagtap J, Desai M (2013) Prospective randomized controlled trial comparing laser lithotripsy with pneumatic lithotripsy in miniperc for renal calculi. J Endourol 27(12):1444–1449

    Article  PubMed  Google Scholar 

  108. Mak DK, Smith Y, Buchholz N, El-Husseiny T (2016) What is better in percutaneous nephrolithotomy–prone or supine? a systematic review. Arab J Urol 14(2):101–107

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lee SH, Jeon SH (2021) Lasers for the treatment of urinary stone disease. Investig Clin Urol 62(3):241–242

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pierre S, Preminger GM (2007) Holmium laser for stone management. World J Urol 25(3):235–239

    Article  PubMed  Google Scholar 

  111. Pietropaolo A, Jones P, Whitehurst L, Somani BK (2019) Role of “dusting and pop-dusting” using a high-powered (100 W) laser machine in the treatment of large stones (≥ 15 mm): prospective outcomes over 16 months. Urolithiasis 47(4):391–394

    Article  PubMed  Google Scholar 

  112. Matlaga BR, Chew B, Eisner B, Humphreys M, Knudsen B, Krambeck A, Lange D, Lipkin M, Miller NL, Monga M et al (2018) Ureteroscopic laser lithotripsy: a review of dusting vs fragmentation with extraction. J Endourol 32(1):1–6

    Article  PubMed  Google Scholar 

  113. Martov AG, Ergakov DV, Guseynov M, Andronov AS, Plekhanova OA (2021) Clinical comparison of super pulse thulium fiber laser and high-power holmium laser for ureteral stone management. J Endourol 35(6):795–800

    Article  PubMed  Google Scholar 

  114. Enikeev D, Herrmann TRW, Taratkin M, Azilgareeva C, Borodina A, Traxer O (2023) Thulium fiber laser in endourology: current clinical evidence. Curr Opin Urol 33(2):95–107

    Article  PubMed  Google Scholar 

  115. Preminger GM, Tiselius HG, Assimos DG, Alken P, Buck AC, Gallucci M, Knoll T, Lingeman JE, Nakada SY, Pearle MS et al (2007) 2007 Guideline for the management of ureteral calculi. Eur Urol 52(6):1610–1631

    Article  PubMed  Google Scholar 

  116. Grosso AA, Sessa F, Campi R, Viola L, Polverino P, Crisci A, Salvi M, Liatsikos E, Feu OA, Dim F et al (2021) Intraoperative and postoperative surgical complications after ureteroscopy, retrograde intrarenal surgery, and percutaneous nephrolithotomy: a systematic review. Minerva Urol Nephrol 73(3):309–332

    Article  PubMed  Google Scholar 

  117. Liu M, Chen J, Gao M, Zeng H, Cui Y, Zhu Z, Chen H (2021) Preoperative midstream urine cultures vs renal pelvic urine culture or stone culture in predicting systemic inflammatory response syndrome and urosepsis after percutaneous nephrolithotomy: a systematic review and meta-analysis. J Endourol 35(10):1467–1478

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank An-Najah National University for providing access to the most recent information sources, such as the Scopus database.

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

S.H.Z. played a crucial role in various aspects of the research, including data management, conceptualization, methodology, data collection, interpretation, and the initial drafting of the manuscript. F.A. was actively involved in the data interpretation and validation and made substantial contributions to the conceptualization and methodology of the study. Additionally, F.A. contributed significantly to the writing of the manuscript and participated in the revision process from the initial draft. All the authors conducted a thorough critical review and granted approval for the final manuscript before its submission.

Corresponding authors

Correspondence to Faris Abushamma or Sa’ed H. Zyoud.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Ethical approval was not needed because the data for the bibliometric research were extracted directly from the database without further human intervention.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abushamma, F., Zyoud, S.H. Analyzing global research trends and focal points in the utilization of laser techniques for the treatment of urolithiasis from 1978 to 2022: visualization and bibliometric analysis. Urolithiasis 52, 67 (2024). https://doi.org/10.1007/s00240-024-01568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00240-024-01568-1

Keywords

Navigation