Skip to main content
Log in

Carboxymethylated Rhizoma alismatis polysaccharides reduces the risk of calcium oxalate stone formation by reducing cellular inflammation and oxidative stress

  • Research
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

This study aims to elucidate the mechanism and potential of Rhizoma alismatis polysaccharides (RAPs) in preventing oxidative damage to human renal proximal tubule epithelial cells. The experimental approach involved incubating HK-2 cells with 100 nm calcium oxalate monohydrate for 24 h to establish a cellular injury model. Protection was provided by RAPs with varying carboxyl group contents: 3.57%, 7.79%, 10.84%, and 15.33%. The safeguarding effect of RAPs was evaluated by analyzing relevant cellular biochemical indicators. Findings demonstrate that RAPs exhibit notable antioxidative properties. They effectively diminish the release of reactive oxygen species, lactate dehydrogenase, and malondialdehyde, a lipid oxidation byproduct. Moreover, RAPs enhance superoxide dismutase activity and mitochondrial membrane potential while attenuating the permeability of the mitochondrial permeability transition pore. Additionally, RAPs significantly reduce levels of inflammatory factors, including NLRP3, TNF-α, IL-6, and NO. This reduction corresponds to the inhibition of overproduced pro-inflammatory mediator nitric oxide and the caspase 3 enzyme, leading to a reduction in cellular apoptosis. RAPs also display the ability to suppress the expression of the HK-2 cell surface adhesion molecule CD44. The observed results collectively underscore the substantial anti-inflammatory and anti-apoptotic potential of all four RAPs. Moreover, their capacity to modulate the expression of cell surface adhesion molecules highlights their potential in inhibiting the formation of kidney stones. Notably, RAP3, boasting the highest carboxyl group content, emerges as the most potent agent in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Abbreviations

RAPs:

Rhizoma alismatis polysaccharides

CaOx:

Calcium oxalate

COM:

CaOx monohydrate

COD:

CaOx dihydrate

mPTP:

The mitochondrial permeability transition pore

ROS:

Reactive oxygen species

MCP-1:

Monocyte chemokine-1

OPN:

Osteopontin

TNF-α:

Tumor necrosis factor alpha

IL-6:

Interleukin-6

LPS:

Lipopolysaccharide

MCP:

Momordica charantia polysaccharides

NO:

Nitric oxide

IL-1β:

Interleukin-1β

iNOS:

Inducible NO synthase

COX-2:

Cyclooxygenase-2

FBS :

Fetal bovine serum

LDH :

Lactate dehydrogenase

SOD:

Superoxide dismutase

MDA:

Malondialdehyde

ΔΨm:

Mitochondrial membrane potential

AO/EB:

Acridine orange/ethidium bromide

References

  1. Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, Traxer O, Tiselius HG (2016) Kidney stones. Nat Rev Dis Primers 2(1):1–23

    Article  Google Scholar 

  2. Singh P, Harris PC, Sas DJ, Lieske JC (2022) The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol 18(4):224–240

    Article  PubMed  Google Scholar 

  3. Zhang L, Li S, Cong M, Liu Z, Dong Z, Zhao M, Gao K, Hu L, Qiao H (2023) Lemon-derived extracellular vesicle-like nanoparticles block the progression of kidney stones by antagonizing endoplasmic reticulum stress in renal tubular cells. Nano Lett 23(4):1555–1563

    Article  CAS  PubMed  Google Scholar 

  4. Bibilash BS, Vijay A, Fazil Marickar YM (2010) Stone composition and metabolic status. Urol Res 38(3):211–213

    Article  CAS  PubMed  Google Scholar 

  5. Shtukenberg AG, Hu L, Sahota A, Kahr B, Ward MD (2022) Disrupting crystal growth through molecular recognition: designer therapies for kidney stone prevention. Accounts Chem Res 55(4):516–525

    Article  CAS  Google Scholar 

  6. Khan SR, Canales BK, Dominguez-Gutierrez PR (2021) Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 17(6):417–433

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y, Sun Y, Kang J, He Z, Liu Q, Wu J, Li D, Wang X, Tao Z, Guan X, She W, Xu H, Deng Y (2022) Role of ROS-induced NLRP3 inflammasome activation in the formation of calcium oxalate nephrolithiasis. Front Immunol 13:152

    Google Scholar 

  8. Mulay S R, Evan A, Anders HJ (2014) Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Nephrol Dial Transpl 29(3): 507–514

  9. Yang C, Yang W, He Z, Guo J, Yang X, Wang R, Li H (2021) Kaempferol alleviates oxidative stress and apoptosis through mitochondria-dependent pathway during lung ischemia-reperfusion injury. Front Pharmacol 12:624402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wigner P, Grębowski R, Bijak M, Szemraj J, Saluk-Bijak J (2021) The Molecular aspect of nephrolithiasis development. Cells 10(8):1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen XW, Sun XY, Tang GH, Ouyang JM (2022) Sulfated Undaria pinnatifida polysaccharide inhibits the formation of kidney stones by inhibiting HK-2 cell damage and reducing the adhesion of nano-calcium oxalate crystals. Biomater Adv 134:112564

    Article  PubMed  Google Scholar 

  12. Niimi K, Yasui T, Hirose M, Hamamoto S, Itoh Y, Okada A, Kubota Y, Kojima Y, Tozawa K, Sasaki S, Hayashi Y, Kohri K (2012) Mitochondrial permeability transition pore opening induces the initial process of renal calcium crystallization. Free Radical Bio Med 52(7):1207–1217

    Article  CAS  Google Scholar 

  13. Li H, Wang Y, Zhao P, Guo L, Huang L, Li X, Guo W (2023) Naturally and chemically acetylated polysaccharides: structural characteristics, synthesis, activities, and applications in the delivery system: a review. Carbohyd Polym 120746

  14. Ahmad MM (2021) Recent trends in chemical modification and antioxidant activities of plants-based polysaccharides: a review. Carbohyd Polym Technol Appl 2:100045

    CAS  Google Scholar 

  15. Sun J, Wei S, Zhang Y, Li J (2021) Protective effects of Astragalus polysaccharide on sepsis-induced acute kidney injury. Anal Cell Pathol 7178253

  16. Raish M, Ahmad A, Ansari MA, Alkharfy KM, Aljenoobi FI, Jan BL, Al-Mohizea AM, Khan A, Ali N (2018) Momordica charantia polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through NF-kB signaling pathway inhibition. Int J Biol Macromol 111:193–199

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Zhang X, Zou K, Xie J, Zhao S, Liu J, Liu H, Wang J, Wang Y (2017) Seabuckthorn berry polysaccharide protects against carbon tetrachloride-induced hepatotoxicity in mice via anti-oxidative and anti-inflammatory activities. Food Funct 8(9):3130–3138

    Article  CAS  PubMed  Google Scholar 

  18. Wu GJ, Shiu SM, Hsieh MC, Tsai GJ (2016) Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum cristaefolium. Food Hydrocolloid 53:16–23

    Article  CAS  Google Scholar 

  19. Xiong P, Cheng XY, Sun XY, Chen XW, Ouyang JM (2022) Interaction between nanometer calcium oxalate and renal epithelial cells repaired with carboxymethylated polysaccharides. Biomater Adv 137:212854

    Article  CAS  PubMed  Google Scholar 

  20. Tian T, Chen H, Zhao YY (2014) Traditional uses, phytochemistry, pharmacology, toxicology and quality control of Alisma orientale (Sam.) Juzep: a review. J Ethnopharmacol 158:373–387

  21. Zhao ZY, Zhang Q, Li YF, Dong LL, Liu SL (2015) Optimization of ultrasound extraction of Alisma orientalis polysaccharides by response surface methodology and their antioxidant activities. Carbohyd Polym 119:101–109

    Article  CAS  Google Scholar 

  22. Kim HG, Kim MY, Cho JY (2018) Alisma canaliculatum ethanol extract suppresses inflammatory responses in LPS-stimulated macrophages, HCl/EtOH-induced gastritis, and DSS-triggered colitis by targeting Src/Syk and TAK1 activities. J Ethnopharmacol 219:202–212

    Article  CAS  PubMed  Google Scholar 

  23. Cheng XY, Ouyang JM (2023) Carboxymethylated Rhizoma alismatis polysaccharides regulate calcium oxalate crystals growth and reduce the regulated crystals’ cytotoxicity. Biomolecules 13(7):1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang H, Sun XY, Chen XW, Ouyang JM (2020) Degraded Porphyra yezoensis polysaccharide protects HK-2 cells and reduces nano-COM crystal toxicity, adhesion and endocytosis. J Mater Chem B 8(32):7233–7252

    Article  CAS  PubMed  Google Scholar 

  25. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laffleur F, Psenner J, Suchaoin W (2015) Permeation enhancement via thiolation: in vitro and ex vivo evaluation of hyaluronic acid-cysteine ethyl ester. J Pharm Sci 104(7):2153–2160

    Article  CAS  PubMed  Google Scholar 

  27. An H, Ling C, Xu M, Hu M, Wang H, Liu J, Song G, Liu J (2020) Oxidative damage induced by nano-titanium dioxide in rats and mice: a systematic review and meta-analysis. Biol Trace Elem Res 2020(194):184–202

    Article  Google Scholar 

  28. Wang S, El-Deiry WS (2004) Cytochrome c: a crosslink between the mitochondria and the endoplasmic reticulum in calcium-dependent apoptosis. Cancer Biol Ther 3(1):44–46

    Article  PubMed  Google Scholar 

  29. Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. CSH Perspect Biol 6(10):a016295

    Google Scholar 

  30. Mehaffey E, Majid DSA (2017) Tumor necrosis factor-α, kidney function and hypertension. Am J Physiol-Renal 313(4):F1005–F1008

    Article  Google Scholar 

  31. Sharma JN, Al-Omran A, Parvathy SS (2007) Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15:252–259

    Article  CAS  PubMed  Google Scholar 

  32. Rampanelli E, Dessing MC, Claessen N, Teske GJD, Joosten SPJ, Pals ST, Leemans JC, Florquin S (2013) CD44-deficiency attenuates the immunologic responses to LPS and delays the onset of endotoxic shock-induced renal inflammation and dysfunction. PLoS ONE 8(12):e84479

    Article  PubMed  PubMed Central  Google Scholar 

  33. Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri-Anganeh M, Tahamtan M, Savardashtaki A (2022) Caspase-3: structure, function, and biotechnological aspects. Biotechnol Appl Bioc 69(4):1633–1645

    Article  CAS  Google Scholar 

  34. Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D, Romoli S, Grigorescu M, Kulkarni OP, Popper B, Vielhauer V, Zuchtriegel G, Reichel C, Bräsen JH, Romagnani P, Bilyy R, Munoz LE, Herrmann M, Liapis H, Krautwald S, Linkermann A, Anders HJ (2016) Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun 7(1):10274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun XY, Zhang H, Chen JY, Zeng JH, Ouyang JM (2021) Porphyra yezoensis polysaccharide and potassium citrate synergistically inhibit calcium oxalate crystallization induced by renal epithelial cells and cytotoxicity of the formed crystals. Mat Sci Eng C 119:111448

    Article  CAS  Google Scholar 

  36. Kim H, Cho SM, Kim WJ, Hong KB, Suh HJ, Yu KW (2022) Red ginseng polysaccharide alleviates cytotoxicity and promotes anti-inflammatory activity of ginsenosides. Food Sci Technol 42:e52220

    Article  Google Scholar 

  37. Qian WW, Yang SQ, Hu SM, Wang XL, Zhu Y, Zhou T (2021) Enzymatic degradation, antioxidant and immunoregulatory activities of polysaccharides from brown algae Sargassum fusiforme. J Food Meas Charact 15(2):1960–1972

    Article  Google Scholar 

  38. Zha X-Q, Deng Y-Y, Li X-L, Wang J-F, Pan L-H, Luo J-P (2017) The core structure of a Dendrobium huoshanense polysaccharide required for the inhibition of human lens epithelial cell apoptosis. Carbohydr Polym 155:252–260

    Article  CAS  PubMed  Google Scholar 

  39. Feng Y, Qiu Y, Duan Y, He Y, Xiang H, Sun W, Zhang H, Ma H (2022) Characterization, antioxidant, antineoplastic and immune activities of selenium modified Sagittaria sagittifolia L. polysaccharides. Food Res Int 153:110913

  40. Xu J, Liu W, Yao W, Pang X, Yin D, Gao X (2009) Carboxymethylation of a polysaccharide extracted from Ganoderma lucidum enhances its antioxidant activities in vitro. Carbohyd Polym 78(2):227–234

    Article  CAS  Google Scholar 

  41. Simsek M, Asiyanbi-Hammed TT, Rasaq N, Hammed AM (2021) Progress in bioactive polysaccharide-derivatives: a review. Food Rev Int 1–16

  42. Thongboonkerd V, Yasui T, Khan SR (2021) Immunity and inflammatory response in kidney stone disease. Front Immunol 12:795559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang F, Sun XY, Ouyang JM (2020) Preparation and characterization of selenized Astragalus polysaccharide and its inhibitory effect on kidney stones. Mat Sci Eng C 110:110732

    Article  CAS  Google Scholar 

  44. Huang MY, Chaturvedi LS, Koul S, Koul HK (2005) Oxalate stimulates IL-6 production in HK-2 cells, a line of human renal proximal tubular epithelial cells. Kidney Int 68(2):497–503

    Article  CAS  PubMed  Google Scholar 

  45. Du C, Shi Y, Ren Y, Wu H, Yao F, Wei J, Wu M, Hou Y, Duan H (2015) Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRα pathway in HK-2 cells. Drug Des Dev Ther 9:5099

    CAS  Google Scholar 

  46. Mohammadi G, Karimi AA, Hafezieh M, Dawood MAO, Abo-Al-Ela HG (2022) Pistachio hull polysaccharide protects Nile tilapia against LPS-induced excessive inflammatory responses and oxidative stress, possibly via TLR2 and Nrf2 signaling pathways. Fish Shellfish Immun 121:276–284

    Article  CAS  Google Scholar 

  47. Zhao XY, Wang G, Wang Y, Tian XG, Zhao JC, Huo XK, Sun CP, Feng L, Ning J, Wang C, Zhang BJ, Wang X (2018) Chemical constituents from Alisma plantago-aquatica subsp. orientale (Sam.) Sam and their anti-inflammatory and antioxidant activities. Nat Prod Res 32(23):2749–2755

  48. Sun Q, Li Y, Shi L, Hussain R, Mehmood K, Tang Z, Zhang H (2022) Heavy metals induced mitochondrial dysfunction in animals: molecular mechanism of toxicity. Toxicology 153136

  49. Alelign T, Petros B (2018) Kidney stone disease: an update on current concepts. Adv Urol 2018:3068365

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chaiyarit S, Thongboonkerd V (2020) Mitochondrial dysfunction and kidney stone disease. Front Physiol 11:566506

    Article  PubMed  PubMed Central  Google Scholar 

  51. López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C, Marta N, Valcárcel-Ares MN (2013) Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13(2):106–118

  52. Zou GJ, Huang WB, Sun XY, Tang GH, Ouyang JM (2021) Carboxymethylation of corn silk polysaccharide and its inhibition on adhesion of nanocalcium oxalate crystals to damaged renal epithelial cells. ACS Biomater Sci Eng 7(7):3409–3422

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82270800), Clinical Research Center For Pediatric Genitourinary Disease In Hunan Province (No. 2021SK4017) and the Scientific Research Project of Hunan Provincial Health Commission (No. 202204054938).

Author information

Authors and Affiliations

Authors

Contributions

Zhi Wang, Li Liu, Chuang-Ye Li, Xin-Yi Tong, and Xiao-Yan Cheng wrote the main manuscript text; Yao-Wang Zhao* and Jian-Ming Ouyang* are directors.

Corresponding authors

Correspondence to Yao-Wang Zhao or Jian-Ming Ouyang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of Human and Animal Rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, L., Li, CY. et al. Carboxymethylated Rhizoma alismatis polysaccharides reduces the risk of calcium oxalate stone formation by reducing cellular inflammation and oxidative stress. Urolithiasis 52, 63 (2024). https://doi.org/10.1007/s00240-024-01565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00240-024-01565-4

Keywords

Navigation