Skip to main content
Log in

Stone attenuation on computer tomography helps surgeons make decisions between miniaturized percutaneous nephrolithotomy or retrograde intrarenal surgery for lower pole stones: a retrospective study

  • Research
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

A retrospective study was performed on 200 patients who underwent miniaturized percutaneous nephrolithotomy (mini-PCNL) or retrograde intrarenal surgery (RIRS) for 10–20 mm sized lower pole renal calculi to investigate the relationship between computed tomography (CT) attenuation of calculi and surgical outcomes. CT was used to examine the location, size, and CT attenuation values of the calculi. Additionally, the operation time, hospital stay, hemoglobin (Hb) reduction, stone-free rate (SFR), and complication rate were also meticulously documented and subjected to comparative analysis. Complications were assessed using the Clavien-Dindo grading system. We observed no significant differences in hospitalization data and follow-up outcomes, except for a longer hospital stay and higher Hb drops in patients receiving mini-PCNL. Statistical analysis revealed an association between CT attenuation and operation time. Compared with mini-PCNL, RIRS could reduce bleeding, hospital stay, surgery time, and complications for 10–20 mm sized lower pole kidney stones with CT values < 1000 HU. RIRS resulted in longer operation time and lower stone-free rates despite shorter hospital stays and less bleeding than mini-PCNL for stones with CT values > 1000 HU. Therefore, selecting an appropriate surgical method based on CT attenuation might improve outcomes. For patients with stone attenuation values < 1000 HU, RIRS is the recommended option. When stone attenuation values > 1000 HU, the surgical method should be chosen based on the patient's individual situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Zeng G, Mai Z, Xia S, Wang Z, Zhang K, Wang L, Long Y, Ma J, Li Y, Wan SP, Wu W, Liu Y, Cui Z, Zhao Z, Qin J, Zeng T, Liu Y, Duan X, Mai X, Yang Z, Kong Z, Zhang T, Cai C, Shao Y, Yue Z, Li S, Ding J, Tang S, Ye Z (2017) Prevalence of kidney stones in china: an ultrasonography based cross-sectional study. BJU Int 120:109–116

    Article  PubMed  Google Scholar 

  2. Quhal F, Seitz C (2021) Guideline of the guidelines: urolithiasis. Curr Opin Urol 31:125–129

    Article  PubMed  Google Scholar 

  3. Assimos D, Krambeck A, Miller NL, Monga M, Murad MH, Nelson CP, Pace KT, Pais VM Jr, Pearle MS, Preminger GM, Razvi H, Shah O, Matlaga BR (2016) Surgical management of stones: American urological association/endourological society guideline, part II. J Urol 196:1161–1169

    Article  PubMed  Google Scholar 

  4. Kyriazis I, Panagopoulos V, Kallidonis P, Özsoy M, Vasilas M, Liatsikos EJ (2015) Complications in percutaneous nephrolithotomy. World J Urol 33:1069–1077

    Article  PubMed  Google Scholar 

  5. Lahme SJU (2018) Miniaturisation of pcnl. Urolithiasis 46:99–106

    Article  PubMed  Google Scholar 

  6. Srisubat A, Potisat S, Lojanapiwat B, Setthawong V, Laopaiboon MJC (2014) Extracorporeal shock wave lithotripsy (eswl) versus percutaneous nephrolithotomy (pcnl) or retrograde intrarenal surgery (rirs) for kidney stones. Cochrane Database of Systematic Reviews 2014:CD007044

    Google Scholar 

  7. Bozzini G, Verze P, Arcaniolo D, Dal Piaz O, Buffi N, Guazzoni G, Provenzano M, Osmolorskij B, Sanguedolce F, Montanari EJ (2017) A prospective randomized comparison among swl, pcnl and rirs for lower calyceal stones less than 2 cm: a multicenter experience. World J Urol 35:1967–1975

    Article  CAS  PubMed  Google Scholar 

  8. Thapa BB, Niranjan VJTSJ (2020) Mini pcnl over standard pcnl: what makes it better? Surg J 6:e19–e23

    Article  Google Scholar 

  9. McClinton S, Starr K, Thomas R, MacLennan G, Lam T, Hernandez R, Pickard R, Anson K, Clark T, MacLennan S, Thomas D, Smith D, Turney B, McDonald A, Cameron S, Wiseman O (2020) The clinical and cost effectiveness of surgical interventions for stones in the lower pole of the kidney: The percutaneous nephrolithotomy, flexible ureterorenoscopy and extracorporeal shockwave lithotripsy for lower pole kidney stones randomised controlled trial (pure rct) protocol. Trials 21:479

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dresner SL, Iremashvili V, Best SL, Hedican SP, Nakada SY (2020) Influence of lower pole infundibulopelvic angle on success of retrograde flexible ureteroscopy and laser lithotripsy for the treatment of renal stones. J Endourol 34:655–660

    Article  PubMed  Google Scholar 

  11. Perks AE, Schuler TD, Lee J, Ghiculete D, Chung DG, Honey RJDA, Pace KT (2008) Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 72:765–769

    Article  PubMed  Google Scholar 

  12. Li Y, He Q, Wang F, Ma T, Bao J, Yang L, Wang Z, Sanjay GJCSRC (2021) The value of hounsfield unit in retrograde intrarenal surgery versus percutaneous nephrolithotomy for the treatment of renal stone of 2–3 cm: a single-center prospective pilot study. Clin Surg Res Commun 5:01–10

    Article  Google Scholar 

  13. Anastasiadis A, Onal B, Modi P, Turna B, Duvdevani M, Timoney A, Wolf JS Jr, De La Rosette J (2013) Impact of stone density on outcomes in percutaneous nephrolithotomy (pcnl): an analysis of the clinical research office of the endourological society (croes) pcnl global study database. Scand J Urol 47:509–514

    Article  PubMed  Google Scholar 

  14. Mitropoulos D, Artibani W, Biyani CS, Jensen JB, Roupreˆt M, Truss MJ (2018) Validation of the Clavien–Dindo grading system in urology by the european association of urology guidelines ad hoc panel. Eur Urol Focus 4:608–613

    Article  PubMed  Google Scholar 

  15. Mitropoulos D, Artibani W, Graefen M, Remzi M, Roupreˆt M, Truss MJE (2012) Reporting and grading of complications after urologic surgical procedures: an ad hoc eau guidelines panel assessment and recommendations. Eur Urol 61:341–349

    Article  PubMed  Google Scholar 

  16. Timm B, Farag M, Davis NF, Webb D, Angus D, Troy A, Bolton D, Jack GS (2021) Stone clearance times with mini-percutaneous nephrolithotomy: Comparison of a 1.5 mm ballistic/ultrasonic mini-probe vs. Laser Can Urol Assoc J 15:E17-e21

    PubMed  Google Scholar 

  17. Desai M, Sun Y, Buchholz N, Fuller A, Matsuda T, Matlaga B, Miller N, Bolton D, Alomar M, Ganpule A (2017) Treatment selection for urolithiasis: percutaneous nephrolithomy, ureteroscopy, shock wave lithotripsy, and active monitoring. World J Urol 35:1395–1399

    Article  PubMed  Google Scholar 

  18. Xiao Y, Li D, Chen L, Xu Y, Zhang D, Shao Y, Lu J (2017) The r.I.R.S. Scoring system: an innovative scoring system for predicting stone-free rate following retrograde intrarenal surgery. BMC Urol 17:105

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jawalekar S, Surve VT, Bhutey AK (2010) The composition and quantitative analysis of urinary calculi in patients with renal calculi. Nepal Med Coll J 12:145–148

    CAS  PubMed  Google Scholar 

  20. De S, Autorino R, Kim FJ, Zargar H, Laydner H, Balsamo R, Torricelli FC, Di Palma C, Molina WR, Monga MJE (2015) Percutaneous nephrolithotomy versus retrograde intrarenal surgery: a systematic review and meta-analysis. Eur Urol 67:125–137

    Article  PubMed  Google Scholar 

  21. Jiang H, Yu Z, Chen L, Wang T, Liu Z, Liu J, Wang S, Ye ZJ (2017) Minimally invasive percutaneous nephrolithotomy versus retrograde intrarenal surgery for upper urinary stones: A systematic review and meta-analysis. BioMed Res Int 2017:2035851

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mostafavi MR, Ernst RD, Saltzman B (1998) Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol 159:673–675

    Article  CAS  PubMed  Google Scholar 

  23. Bellin MF, Renard-Penna R, Conort P, Bissery A, Meric JB, Daudon M, Mallet A, Richard F, Grenier P (2004) Helical ct evaluation of the chemical composition of urinary tract calculi with a discriminant analysis of ct-attenuation values and density. Eur Radiol 14:2134–2140

    Article  PubMed  Google Scholar 

  24. Wisenbaugh ES, Paden RG, Silva AC, Humphreys MR (2014) Dual-energy vs conventional computed tomography in determining stone composition. Urology 83:1243–1247

    Article  PubMed  Google Scholar 

  25. Tung KH, Tan EC, Foo KT (1984) Chemolysis of uric acid stones. Ann Acad Med Singap 13:620–624

    CAS  PubMed  Google Scholar 

  26. Ganpule AP, Vijayakumar M, Malpani A, Desai MR (2016) Percutaneous nephrolithotomy (pcnl) a critical review. Int J Surg 36:660–664

    Article  PubMed  Google Scholar 

  27. Lahme S, Bichler K-H, Strohmaier WL, Götz TJEu (2001) Minimally invasive pcnl in patients with renal pelvic and calyceal stones. Eur Urol 40:619–624

    Article  CAS  PubMed  Google Scholar 

  28. Liu L, Zheng S, Xu Y, Wei QJ (2010) Systematic review and meta-analysis of percutaneous nephrolithotomy for patients in the supine versus prone position. J Endourol 24:1941–1946

    Article  PubMed  Google Scholar 

  29. Williams JC Jr, Kim SC, Zarse CA, McAteer JA, Lingeman JE (2004) Progress in the use of helical ct for imaging urinary calculi. J Endourol 18:937–941

    Article  PubMed  Google Scholar 

  30. Newhouse JH, Prien EL, Amis ES Jr, Dretler SP, Pfister RC (1984) Computed tomographic analysis of urinary calculi. AJR Am J Roentgenol 142:545–548

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (82000720, 82070724), and Natural Science Foundation of Anhui Province (2008085QH360, 1908085MH246).

Author information

Authors and Affiliations

Authors

Contributions

Chang-Sheng Zhan and Zong-Yao Hao designed and conceived the project. Chang-Sheng Zhan filter eligible patients and collected clinical data. Cheng Zhang sorted and analyzed data, and wrote this manuscript. Jian-Zhong Wang, Song Fan and Lei Zhao performed procedures. Hong-Min Shu provided imaging technical support.

Corresponding author

Correspondence to Zong-Yao Hao.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in this article.

Ethical approval

This article does not contain any studies with human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, CS., Zhang, C., Wang, JZ. et al. Stone attenuation on computer tomography helps surgeons make decisions between miniaturized percutaneous nephrolithotomy or retrograde intrarenal surgery for lower pole stones: a retrospective study. Urolithiasis 51, 77 (2023). https://doi.org/10.1007/s00240-023-01442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00240-023-01442-6

Keywords

Navigation