Skip to main content
Log in

Intraluminal measurement of papillary duct urine pH, in vivo: a pilot study in the swine kidney

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

An Erratum to this article was published on 05 March 2016

Abstract

We describe the in vivo use of an optic-chemo microsensor to measure intraluminal papillary duct urine pH in a large mammal. Fiber-optic pH microsensors have a tip diameter of 140-µm that allows insertion into papillary Bellini ducts to measure tubule urine proton concentration. Anesthetized adult pigs underwent percutaneous nephrolithotomy to access the lower pole of the urinary collecting system. A flexible nephroscope was advanced towards an upper pole papilla with the fiber-optic microsensor contained within the working channel. The microsensor was then carefully inserted into Bellini ducts to measure tubule urine pH in real time. We successfully recorded tubule urine pH values in five papillary ducts from three pigs (1 farm pig and 2 metabolic syndrome Ossabaw pigs). Our results demonstrate that optical microsensor technology can be used to measure intraluminal urine pH in real time in a living large mammal. This opens the possibility for application of this optical pH sensing technology in nephrolithiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wagner CA, Mohebbi N (2010) Urinary pH and stone formation. J Nephrol 23(S16):S165–S169

    PubMed  Google Scholar 

  2. Coe FL, Evan AP, Lingeman JE et al (2010) Plaque and deposits in nine human stone diseases. Urol Res 38:239–247

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sonnenberg H, Chong C (1980) Comparison of micropunture of microcatheterization in papillary collecting duct. Am J Physiol 239:F95–105

    CAS  PubMed  Google Scholar 

  4. Graber ML, Bengele HH, Schwartz JH et al (1981) pH and PCO2 profiles of the rat inner medullary collecting duct. Am J Physiol 241:F659–F668 (Renal Fluid Electrolyte Physiol 10)

    CAS  PubMed  Google Scholar 

  5. DuBose TD Jr, Lucci MS, Hogg RJ et al (1983) Comparison of acidification parameters in superficial and deep nephrons of the rat. Am J Physiol 244:F497–F503 (Renal Fluid Electrolyte Physiol 13)

    PubMed  Google Scholar 

  6. Wolfbeis OS (2008) Fiber-optic chemical sensors and biosensors. Anal Chem 80:4269–4283

    Article  CAS  PubMed  Google Scholar 

  7. Kocincova AS, Borisov SM, Krause C et al (2007) Fiber-optic microsensors for simultaneous sensing of oxygen and pH, and of oxygen and temperature. Anal Chem 79:8486–8493

    Article  CAS  PubMed  Google Scholar 

  8. German Patent Application DE 19,829,657, 1 Aug 1997

  9. Handa RK, Matlaga BR, Connors BA et al (2006) Acute effects of percutaneous tract dilation on renal function and structure. J Endourol 20:1030–1040

    Article  PubMed  Google Scholar 

  10. Abate N, Chandalia M, Cabo-Chan AV Jr et al (2004) The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int 65:386–392

    Article  CAS  PubMed  Google Scholar 

  11. Maalouf NM, Cameron MA, Moe OW et al (2007) Low urine pH: a novel feature of the metabolic syndrome. Clin J Am Soc Nephrol 2:883–888

    Article  CAS  PubMed  Google Scholar 

  12. Handa RK, Evan AP, Connors BA et al (2014) Shock wave lithotripsy targeting of the kidney and pancreas does not increase the severity of metabolic syndrome in a porcine model. J Urol 192:1257–1265

    Article  PubMed  PubMed Central  Google Scholar 

  13. Handa RK, Johnson CD, Connors BA et al (2014) Shock wave lithotripsy does not impair renal function in a swine model of metabolic syndrome. J Endourol. doi:10.1089/end.2014.0570

    PubMed  Google Scholar 

  14. McKinley BA, Morris WP, Parmley CL et al (1996) Brain parenchyma PO2, PCO2, and pH during and after hypoxic, ischemic brain insult in dogs. Crit Care Med 24:1858–1868

    Article  CAS  PubMed  Google Scholar 

  15. Devlieger R, Gratacós E, Wu J et al (2000) Continuous monitoring of fetal pH, pO2 and pCO2 using a fiberoptic multiparameter sensor in animal models reproducing in utero conditions. Fetal Diagn Ther 15:127–131

    Article  CAS  PubMed  Google Scholar 

  16. Soller BR, Heard SO, Cingo NA et al (2001) Application of fiberoptic sensors for the study of hepatic dysoxia in swine hemorrhagic shock. Crit Care Med 29:1438–1444

    Article  CAS  PubMed  Google Scholar 

  17. Ziemann AE, Schnizler MK, Albert GW et al (2008) Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 11:816–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doppenberg EMR, Zauner A, Bullock R et al (1998) Correlations between brain tissue oxygen tension, carbon dioxide tension, pH, and cerebral blood flow-a better way of monitoring the severely injured brain. Surg Neurol 49:650–654

    Article  CAS  PubMed  Google Scholar 

  19. Jauniaux E, Watson A, Ozturk O et al (1999) In-vivo measurement of intrauterine gases and acid-base values early in human pregnancy. Hum Reprod 14:2901–2904

    Article  CAS  PubMed  Google Scholar 

  20. Soller BR, Hagan RD, Shear M et al (2007) Comparison of intramuscular and venous blood pH, PCO2 and PO2 during rhythmic handgrip exercise. Physiol Meas 28:639–649

    Article  PubMed  Google Scholar 

  21. Evan AP, Willis LR (2007) Extracorporeal shock wave lithotripsy: complications. In: Smith AD et al (eds) Smith’s textbook on endourology. BC Decker Inc., Hamilton, pp 353–365

    Google Scholar 

  22. McAteer JA, Evan AP (2008) The acute and long-term adverse effects of shock wave lithotripsy. Semin Nephrol 28:200–213

    Article  PubMed  PubMed Central  Google Scholar 

  23. Krambeck AE, Handa SE, Evan AP et al (2010) Brushite stone disease as a consequence of lithotripsy. Urol Res 38:293–299

    Article  PubMed  PubMed Central  Google Scholar 

  24. Parks JH, Worcester EM, Coe FL et al (2004) Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones. Kidney Int 66:777–785

    Article  CAS  PubMed  Google Scholar 

  25. Evan AP, Coe FL, Connors BA et al (2015) Mechanism by which shock wave lithotripsy can promote formation of human calcium phosphate stones. Am J Physiol Renal Physiol 308:F938–F949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Handa RK, Liu Z, Connors BA et al (2015) Effect of renal shock wave lithotripsy on the development of metabolic syndrome in a juvenile swine model: a pilot study. J Urol 193:1409–1416

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Drs. Ehud Gnessin and Jessica Mandeville aided in the percutaneous access surgery with JEL inserting fiber-optic microsensors into Bellini ducts. RKH operated and evaluated the performance of the fiber-optic phase detection system. The authors are grateful to Dr. James A. McAteer for insightful comments on the manuscript, and to Philip M. Blomgren for preparing illustrations.

Funding

Supported by Public Health Service grants P01-DK56788 and P01-DK43881.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajash K. Handa.

Ethics declarations

Conflict of interest

Authors RKH, SBB, APE, BAC and CDJ declare no conflict of interest; JEL has investment interests with Midwest Mobile Lithotripsy and Midstate Mobile Lithotripsy.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handa, R.K., Lingeman, J.E., Bledsoe, S.B. et al. Intraluminal measurement of papillary duct urine pH, in vivo: a pilot study in the swine kidney. Urolithiasis 44, 211–217 (2016). https://doi.org/10.1007/s00240-015-0834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-015-0834-9

Keywords

Navigation