Skip to main content
Log in

Breathing Air and Living Underwater: Molecular Evolution of Genes Related to Antioxidant Response in Cetaceans and Pinnipeds

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Cetaceans and pinnipeds are lineages of mammals that have independently returned to the aquatic environment, acquiring varying degrees of dependence on it while sharing adaptations for underwater living. Here, we focused on one critical adaptation from both groups, their ability to withstand the ischemia and reperfusion experienced during apnea diving, which can lead to the production of reactive oxygen species (ROS) and subsequent oxidative damage. Previous studies have shown that cetaceans and pinnipeds possess efficient antioxidant enzymes that protect against ROS. In this study, we investigated the molecular evolution of key antioxidant enzyme genes (CAT, GPX3, GSR, PRDX1, PRDX3, and SOD1) and the ROS-producing gene XDH, in cetaceans and pinnipeds lineages. We used the ratio of non-synonymous (dN) to synonymous (dS) substitutions as a measure to identify signatures of adaptive molecular evolution in these genes within and between the two lineages. Additionally, we performed protein modeling and variant impact analyzes to assess the functional consequences of observed mutations. Our findings revealed distinct selective regimes between aquatic and terrestrial mammals in five of the examined genes, including divergences within cetacean and pinniped lineages, between ancestral and recent lineages and between crowns groups. We identified specific sites under positive selection unique to Cetacea and Pinnipedia, with one site showing evidence of convergent evolution in species known for their long and deep-diving capacities. Notably, many sites under adaptive selection exhibited radical changes in amino acid properties, with some being damaging mutations in human variations, but with no apparent detrimental impacts on aquatic mammals. In conclusion, our study provides insights into the adaptive changes that have occurred in the antioxidant systems of aquatic mammals throughout their evolutionary history. We observed both distinctive features within each group of Cetacea and Pinnipedia and instances of convergence. These findings highlight the dynamic nature of the antioxidant system in response to challenges of the aquatic environment and provide a foundation for further investigations into the molecular mechanisms underlying these adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen KN, Vázquez-Medina JP (2019) Natural tolerance to ischemia and hypoxemia in diving mammals: a review. Front Physiol 10(September):1199

    Article  PubMed  PubMed Central  Google Scholar 

  • Berta A, Churchill M, Boessenecker RW (2018) The origin and evolutionary biology of pinnipeds: seals, sea lions, and walruses. Annu Rev Earth Planet Sci 46(1):203–228

    Article  CAS  Google Scholar 

  • Betts MJ, Russell RB (2003) Amino acid properties and consequences of substitutions. Bioinform Genet 317:289

    Article  Google Scholar 

  • Blix AS (2018) Adaptations to deep and prolonged diving in phocid seals. J Exp Biol. https://doi.org/10.1242/jeb.182972

    Article  PubMed  Google Scholar 

  • Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochem Biophys Acta 1830(5):3289–3303

    Article  PubMed  Google Scholar 

  • Cabrera AA, Bérubé M, Lopes XM, Louis M, Oosting T, Rey-Iglesia A, Rivera-León VE, Székely D, Lorenzen ED, Palsbøll PJ (2021) A genetic perspective on cetacean evolution. Annu Rev Ecol Evol Syst 52(1):131–151

    Article  Google Scholar 

  • Cantú-Medellín N, Byrd B, Hohn A, Vázquez-Medina JP, Zenteno-Savín T (2011) Differential antioxidant protection in tissues from marine mammals with distinct diving capacities. Shallow/short vs. deep/long divers. Comp Biochem Physiol Part A Mol Integr Physiol 158(4):438–443

    Article  Google Scholar 

  • Cao Z, Roszak AW, Gourlay LJ, Lindsay JG, Isaacs NW (2005) Bovine mitochondrial Peroxiredoxin III forms a two-ring Catenane. Structure 13(11):1661–1664

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Bhella D, Lindsay JG (2007) Reconstitution of the mitochondrial PrxIII antioxidant defence pathway: general properties and factors affecting PrxIII activity and oligomeric state. J Mol Biol 372(4):1022–1033

    Article  CAS  PubMed  Google Scholar 

  • Castellini M, Mellish JA (2023) Physiology of marine mammals: adaptations to the ocean. CRC Press, Boca Raton

    Book  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605

    Article  CAS  PubMed  Google Scholar 

  • Chikina M, Robinson JD, Clark NL (2016) Hundreds of genes experienced convergent shifts in selective pressure in marine mammals. Mol Biol Evol 33(9):2182–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis RW (2014) A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. J Comp Physiol B Biochem Syst Environ Physiol 184(1):23–53

    Article  Google Scholar 

  • Davis RW (2019) Marine mammals: adaptations for an aquatic life. Springer, Berlin

    Book  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5(August):113

    Article  Google Scholar 

  • Elsner R, Oyasaeter S, Almaas R, Saugstad OD (1998) Diving seals, ischemia-reperfusion and oxygen radicals. Comp Biochem Physiol Part A Mol Integr Physiol 119(4):975–980

    Article  CAS  Google Scholar 

  • Foote AD, Liu Y, Thomas GWC, Vinař T, Alföldi J, Deng J, Dugan S et al (2015) Convergent evolution of the genomes of marine mammals. Nat Genet 47(3):272–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fordyce RE (2018) Cetacean evolution. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of marine mammals, 3rd edn. Academic Press, pp 180–185

    Chapter  Google Scholar 

  • García-Castañeda O, Gaxiola-Robles R, Kanatous S, Zenteno-Savín T (2017) Circulating glutathione concentrations in marine, semiaquatic, and terrestrial mammals. Mar Mamm Sci 33(3):738–747

    Article  Google Scholar 

  • Geßner C, Krüger A, Folkow LP, Fehrle W, Mikkelsen B, Burmester T (2022) Transcriptomes suggest that pinniped and cetacean brains have a high capacity for aerobic metabolism while reducing energy-intensive processes such as synaptic transmission. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2022.877349

    Article  PubMed  PubMed Central  Google Scholar 

  • Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE (2018) UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci: Publ Protein Soc 27(1):14–25

    Article  CAS  Google Scholar 

  • Goldman N, Yang Z (1994) Models of DNA substitution and the discrimination of evolutionary parameters. In: Proceedings of the XVIIth international biometrics 1

  • Halliwell JM, Gutteridge B (2015) Free radicals in biology and medicine, vol Fifth. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hancock JT (2021) Oxygen is instrumental for biological signaling: an overview. Oxygen 1(1):3–15

    Article  Google Scholar 

  • Hao Y, Qu Y, Song G, Lei F (2019) Genomic insights into the adaptive convergent evolution. Curr Genom 20(2):81–89

    Article  CAS  Google Scholar 

  • Hewitt OH, Degnan SM (2023) Antioxidant enzymes that target hydrogen peroxide are conserved across the animal kingdom, from sponges to mammals. Sci Rep 13(1):1–13

    Article  Google Scholar 

  • Hindell MA, Slip DJ, Burton HR, Bryden MM (1992) Physiological implications of continuous, prolonged, and deep dives of the southern elephant seal (Mirounga Leonina). Can J Zool 70(2):370–379

    Article  Google Scholar 

  • Hoang DT, Chernomor O, Haeseler AV, Minh BQ, Vinh LS (2017) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35(2):518–522

    Article  PubMed Central  Google Scholar 

  • Hooker SK, Fahlman A, Castellini M, Mellish J (2015) Pressure regulation. Marine mammal physiology: requisites for ocean living, pp 69–92

  • Janecka J, Chowdhary B, Murphy W (2012) Exploring the correlations between sequence evolution rate and phenotypic divergence across the mammalian tree provides insights into adaptive evolution. J Biosci 37(5):897–909

    Article  PubMed  Google Scholar 

  • Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8(9–10):1865–1879

    Article  CAS  PubMed  Google Scholar 

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley EE, Khoo NKH, Hundley NJ, Malik UZ, Freeman BA, Tarpey MM (2010) Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radical Biol Med 48(4):493–498

    Article  CAS  Google Scholar 

  • Kirkman HN, Gaetani GF (2007) Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci 32(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Kosakovsky P, Sergei L, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22(5):1208–1222

    Article  Google Scholar 

  • Kosakovsky P, Sergei L, Poon AFY, Velazquez R, Weaver S, Hepler NL, Murrell B, Shank SD et al (2020a) HyPhy 2.5-A customizable platform for evolutionary hypothesis testing using phylogenies. Mol Biol Evol 37(1):295–299

    Article  Google Scholar 

  • Kosakovsky P, Sergei L, Wisotsky SR, Escalante A, Magalis BR, Weaver S (2020b) Contrast-FEL—a test for differences in selective pressures at individual sites among clades and sets of branches. Mol Biol Evol 38(3):1184–1198

    Article  Google Scholar 

  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34(3):772–773

    CAS  PubMed  Google Scholar 

  • Levartovsky D, Lagziel A, Sperling O, Liberman U, Yaron M, Hosoya T, Ichida K, Peretz H (2000) XDH gene mutation is the underlying cause of classical xanthinuria: a second report. Kidney Int 57(6):2215–2220

    Article  CAS  PubMed  Google Scholar 

  • Löytynoja A (2014) Phylogeny-aware alignment with PRANK. Methods Mol Biol 1079:155–170

    Article  PubMed  Google Scholar 

  • Maldonado E, Sunagar K, Almeida D, Vasconcelos V, Antunes A (2014) IMPACT_S: integrated multiprogram platform to analyze and combine tests of selection. PLoS ONE 9(10):e96243

    Article  PubMed  PubMed Central  Google Scholar 

  • Martens GA, Folkow LP, Burmester T, Geßner C (2022) Elevated antioxidant defence in the brain of deep-diving pinnipeds. Front Physiol 13(December):1064476

    Article  PubMed  PubMed Central  Google Scholar 

  • McClellan DA (2013) Directional Darwinian Selection in Proteins. BMC Bioinform 14(Suppl 13):S6

    Article  Google Scholar 

  • McDonald BI, Ponganis PJ (2013) Insights from venous oxygen profiles: oxygen utilization and management in diving California sea lions. J Exp Biol 216(Pt 17):3332–3341

    Article  CAS  PubMed  Google Scholar 

  • McGowen MR, Gatesy J, Wildman DE (2014) Molecular evolution tracks macroevolutionary transitions in Cetacea. Trends Ecol Evol 29(6):336–346

    Article  PubMed  Google Scholar 

  • Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radical Biol Med 17(3):235–248

    Article  CAS  Google Scholar 

  • Morley KL, Kazlauskas RJ (2005) Improving enzyme properties: when are closer mutations better? Trends Biotechnol 23(5):231–237

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky SL, Scheffler K (2013) FUBAR: a fast, unconstrained Bayesian approximation for inferring selection. Mol Biol Evol 30(5):1196–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S, Aylward A, Eren K et al (2015) Gene-wide identification of episodic selection. Mol Biol Evol 32(5):1365–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nery MF, Arroyo JI, Opazo JC (2013) Accelerated evolutionary rate of the myoglobin gene in long-diving whales. J Mol Evol 76(6):380–387

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Schmidt HA, Haeseler AV, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274

    Article  CAS  PubMed  Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148(3):929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci: Publ Protein Soc 30(1):70–82

    Article  CAS  Google Scholar 

  • Pond PLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21(5):676–679

    Article  CAS  PubMed  Google Scholar 

  • Ponganis PJ (2019) State of the art review: from the seaside to the bedside: insights from comparative diving physiology into respiratory, sleep and critical care. Thorax 74(5):512–518

    Article  PubMed  Google Scholar 

  • Quick NJ, Cioffi WR, Shearer JM, Fahlman A, Read AJ (2020) Extreme diving in mammals: first estimates of behavioural aerobic dive limits in Cuvier’s beaked whales. J Exp Biol. https://doi.org/10.1242/jeb.222109

    Article  PubMed  Google Scholar 

  • Ramirez JM, Folkow LP, Blix AS (2007) Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu Rev Physiol 69:113–143

    Article  CAS  PubMed  Google Scholar 

  • Ratovitski T, Corson LB, Strain J, Wong P, Cleveland DW, Culotta VC, Borchelt DR (1999) Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. Hum Mol Genet 8(8):1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Rebelo AP, Eidhof I, Cintra VP, Guillot-Noel L, Pereira CV, Timmann D, Traschütz A et al (2021) Biallelic loss-of-function variations in PRDX3 cause cerebellar Ataxia. Brain: J Neurol 144(5):1467–1481

    Article  Google Scholar 

  • Righetti BPH, Simões-Lopes PC, Uhart MM, Wilhelm Filho D (2014) Relating diving behavior and antioxidant status: insights from oxidative stress biomarkers in the blood of two distinct divers, Mirounga Leonina and Arctocephalus Australis. Comp Biochem Physiol Part A Mol Integr Physiol 173C(July):1–6

    CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL (2015) Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32(5):1342–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian R, Wang Z, Niu X, Zhou K, Xu S, Yang G (2016) Evolutionary genetics of hypoxia tolerance in cetaceans during diving. Genome Biol Evol 8(3):827–839

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian R, Seim I, Ren W, Xu S, Yang G (2018) Comparative genomics reveals contraction in cytosolic glutathione transferase genes in cetaceans: implications for oxidative stress adaptation. bioRxiv. https://doi.org/10.1101/485615

    Article  Google Scholar 

  • Tian R, Seim I, Ren W, Xu S, Yang G (2019) Contraction of the ROS scavenging enzyme glutathione S-transferase gene family in cetaceans. G3: Genes Genom Genet 9(7):2303–2315

    Article  CAS  Google Scholar 

  • Tian R, Geng Y, Guo H, Yang C, Seim I, Yang G (2021a) Comparative analysis of the superoxide dismutase gene family in cetartiodactyla. J Evol Biol 34(7):1046–1060

    Article  CAS  PubMed  Google Scholar 

  • Tian R, Geng Y, Yang Y, Seim I, Yang G (2021b) Oxidative stress drives divergent evolution of the glutathione peroxidase (GPX) gene family in mammals. Integr Zool 16(5):696–711

    Article  CAS  PubMed  Google Scholar 

  • Tian R, Yang C, Chai SM, Guo H, Seim I, Yang G (2022) Evolutionary impacts of purine metabolism genes on mammalian oxidative stress adaptation. Zool Res 43(2):241–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upham NS, Esselstyn JA, Jetz W (2019) Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol 17(12):e3000494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D et al (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50(D1):D439–D444

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Medina JP, Zenteno-Savín T, Elsner R (2006) Antioxidant enzymes in ringed seal tissues: potential protection against dive-associated ischemia/reperfusion. Comp Biochem Physiol Toxicol Pharmacol: CBP 142(3–4):198–204

    Article  Google Scholar 

  • Vázquez-Medina JP, Zenteno-Savín T, Elsner R (2007) Glutathione protection against dive-associated ischemia/reperfusion in ringed seal tissues. J Exp Mar Biol Ecol 345(2):110–118

    Article  Google Scholar 

  • Vázquez-Medina JP, Zenteno-Savín T, Tift MS, Forman HJ, Crocker DE, Ortiz RM (2011a) Apnea stimulates the adaptive response to oxidative stress in elephant seal pups. J Exp Biol 214(Pt 24):4193–4200

    Article  PubMed  PubMed Central  Google Scholar 

  • Vázquez-Medina JP, Soñanez-Organis JG, Burns JM, Zenteno-Savín T, Ortiz JM (2011b) Antioxidant capacity develops with maturation in the deep-diving hooded seal. J Exp Biol 214(Pt 17):2903–2910

    Article  PubMed  PubMed Central  Google Scholar 

  • Vázquez-Medina JP, Zenteno-Savín T, Elsner R, Ortiz RM (2012) Coping with physiological oxidative stress: a review of antioxidant strategies in seals. J Comp Physiol B Biochem Syst Environ Physiol 182(6):741–750

    Article  Google Scholar 

  • Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K (2015) RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 32(3):820–832

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm Filho D, Sell F, Ribeiro L, Ghislandi M, Carrasquedo F, Fraga CG, Wallauer JP, Simões-Lopes PC, Uhart MM (2002) Comparison between the antioxidant status of terrestrial and diving mammals. Comp Biochem Physiol Part A Mol Integr Physiol 133(3):885–892

    Article  CAS  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300(5619):650–653

    Article  CAS  PubMed  Google Scholar 

  • Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19(5):671–672

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15(5):568–573

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R (1998) Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 46(4):409–418

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19(6):908–917

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155(1):431–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yewdall NA, Peskin AV, Hampton MB, Goldstone DC, Pearce FG, Gerrard JA (2018) Quaternary structure influences the peroxidase activity of peroxiredoxin 3. Biochem Biophys Res Commun 497(2):558–563

    Article  CAS  PubMed  Google Scholar 

  • Yim HS, Cho YS, Guang X, Kang SG, Jeong JY, Cha SS, Oh HM et al (2014) Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46(1):88–92

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Zhang Y, Zhang P, Liu C, Wang J, Gao H, Hoelzel AR et al (2021) Comparative genomics provides insights into the aquatic adaptations of mammals. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2106080118

    Article  PubMed  PubMed Central  Google Scholar 

  • Zapol WM, Liggins GC, Schneider RC, Qvist J, Snider MT, Creasy RK, Hochachka PW (1979) Regional blood flow during simulated diving in the conscious weddell seal. J Appl Physiol: Respir Environ Exerc Physiol 47(5):968–973

    Article  CAS  PubMed  Google Scholar 

  • Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biol Med 33(3):337–349

    Article  CAS  Google Scholar 

  • Zenteno-Savín T, Hernández C, Elsner R (2002) Diving seals: are they a model for coping with oxidative stress? Comp Biochem Physiol Toxicol Pharmacol: CBP 133(4):527–536

    Article  Google Scholar 

  • Zenteno-Savín T, Vázquez-Medina JP, Cantú-Medellín N, Ponganis PJ, Elsner R (2011) Ischemia/reperfusion in diving birds and mammals: how they avoid oxidative damage. In: Oxidative stress in aquatic ecosystems. John Wiley & Sons, Ltd, Chichester, pp 178–89

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22(12):2472–2479

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Seim I, Gladyshev VN (2015) Convergent evolution of marine mammals is associated with distinct substitutions in common genes. Sci Rep 5(November):16550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Sun D, Guang X, Ma S, Fang X, Mariotti M, Nielsen R, Gladyshev VN, Yang G (2018) Molecular footprints of aquatic adaptation including bone mass changes in cetaceans. Genome Biol Evol 10(3):967–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the São Paulo Research Foundation (FAPESP) (2020/03588-2). LM was funded by Nova Scotia Graduate Scholarship, NSERC Discovery Grant and Biology Graduate A- Fellowship. AP was funded by FAPESP training program (2021/03325-4), FAS was funded by Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) master’s scholarship, and ER by FAPESP doctoral scholarship (2018/01236-1). We are grateful to the scientists that made available the gene sequences used in this study.

Author information

Authors and Affiliations

Authors

Contributions

G.S.V. and M.F.N. conceived the research hypothesis. G.S.V., L.M., A.P., and F.A.S performed the data analysis The manuscript was written by G.S.V. and previous versions were reviewed by E.R., L.M. and M.F.N. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Giovanna Selleghin-Veiga or Mariana F. Nery.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Handling editor: Belinda Chang.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selleghin-Veiga, G., Magpali, L., Picorelli, A. et al. Breathing Air and Living Underwater: Molecular Evolution of Genes Related to Antioxidant Response in Cetaceans and Pinnipeds. J Mol Evol (2024). https://doi.org/10.1007/s00239-024-10170-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00239-024-10170-3

Keywords

Navigation