Skip to main content

Advertisement

Log in

The Sponge Interaction Between Circular RNA and microRNA Serves as a Fast-Evolving Mechanism That Suppresses Non-small Cell Lung Cancer (NSCLC) in Humans

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Non-small cell lung cancer (NSCLC) is one of the most lethal cancer types in the world. Currently, the molecular mechanisms and pathways underlying NSCLC oncogenesis are poorly understood. Using multiple Omics data, we systematically explored the differentially expressed circular RNAs (circRNAs) in NSCLC. We also investigated potential microRNA sponges (that absorb circRNAs) in NSCLC and downstream target genes with experimental verifications. hsa_circ_0003497 was down-regulated in NSCLC and played an inhibitory role in tumorigenesis. In contrast, miR-197-3p was up-regulated in NSCLC. hsa_circ_0003497 directly interacts with miR-197-3p and releases a target gene of miR-197-3p termed CTNND1 (a known tumor suppressor gene). Evolutionary analysis reveals fast evolution of this hsa_circ_0003497-miR-197-3p-CTNND1-NSCLC axis in mammals. This work clarified the biological functions and molecular mechanisms of how hsa_circ_0003497 suppresses NSCLC through miR-197-3p and CTNND1. We discovered molecular markers for the prognosis of NSCLC and provided potential intervention targets for its treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

This study did not produce raw sequence or structure data. The microarray circRNA data of three pairs of NSCLC and normal tissues were downloaded from GEO database (http://www.ncbi.nlm.nih.gov/geo) with accession number GSE112214.

Abbreviations

circRNA:

Circular RNA

ncRNA:

Non-coding RNA

miRNA:

MicroRNA

NSCLC:

Non-small cell lung cancer

LCLC:

Large cell lung cancer

LUSC:

Lung Squamous Carcinoma

LUAD:

Lung Adenocarcinoma

WT:

Wild type

NC:

Negative control

PCR:

Polymerase chain reaction

References

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LL (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21:475–490

    Article  CAS  PubMed  Google Scholar 

  • Chu D, Wei L (2019) Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer 19:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Consortium GT (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45:580–585

    Article  CAS  Google Scholar 

  • Di Giorgio S, Martignano F, Torcia MG, Mattiuz G, Conticello SG (2020) Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Sci Adv 6:5813

    Article  CAS  Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in light of evolution. Am Biol Teach 35:125–129

    Article  Google Scholar 

  • Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–2858

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13:34–42

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faivre C, El Cheikh R, Barbolosi D, Barlesi F (2017) Mathematical optimisation of the cisplatin plus etoposide combination for managing extensive-stage small-cell lung cancer patients. Br J Cancer 116:344–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnerio J, Zhang Y, Cheloni, G, Panella R, Mae Katon J, Simpson M, Matsumoto A, Papa A, Loretelli C, Petri A et al (2019) Intragenic antagonistic roles of protein and circRNA in tumorigenesis. Cell Res 29:628–640

  • Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73:5609–5612

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Martinez R, Ramkumar N, Anderson KV (2019) p120-catenin regulates WNT signaling and EMT in the mouse embryo. Proc Natl Acad Sci USA 116:16872–16881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Yang Y, Wu J, Niu Y, Yao Y, Zhang J, Huang X, Liang S, Chen R, Chen S et al (2020) Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-beta signalling. Cell Death Differ 27:1709–1727

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yu CP, Li Q, Chang S, Xie LL, Wang S (2022) Large-scale omics data reveal the cooperation of mutation-circRNA-miRNA-target gene network in liver cancer oncogenesis. Future Oncol 18:163–178

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yang X, Wang N, Wang H, Yin B, Yang X, Jiang W (2020a) GC usage of SARS-CoV-2 genes might adapt to the environment of human lung expressed genes. Mol Genet Genomics 295:1537–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Yang XN, Wang N, Wang HY, Yin B, Yang XP, Jiang WQ (2020b) The divergence between SARS-CoV-2 and RaTG13 might be overestimated due to the extensive RNA modification. Future Virol 15:341–347

    Article  CAS  Google Scholar 

  • Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Liu FB, Huang M, Xie K, Xie QS, Liu CH, Shen MJ, Huang Q (2019a) Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway. Hepatobiliary Pancreat Dis Int 18:580–586

    Article  PubMed  Google Scholar 

  • Liu M, Wang Q, Shen J, Yang BB, Ding X (2019b) Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol 16:899–905

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Liu X, Zhou J, Dong Y, Jiang W, Jiang W (2022) Rampant C-to-U deamination accounts for the intrinsically high mutation rate in SARS-CoV-2 spike gene. RNA 28:917–926

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang S, Dong QZ, Liu N, Han Y, Zhang XP, Fan CF, Wang EH (2018) The expression pattern of p120-catenin is associated with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Appl Immunohistochem Mol Morphol 26:64–70

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martignano F, Di Giorgio S, Mattiuz G, Conticello SG (2022) Commentary on “Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2.” J Appl Genet 63:423–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594

    Article  PubMed  Google Scholar 

  • Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  • Panda AC, Dudekula DB, Abdelmohsen K, Gorospe M (2018) Analysis of circular RNAs using the web tool circinteractome. Methods Mol Biol 1724:43–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu M, Xia W, Chen R, Wang S, Xu Y, Ma Z, Xu W, Zhang E, Wang J, Fang T et al (2018) The circular RNA circPRKCI promotes tumor growth in lung adenocarcinoma. Cancer Res 78:2839–2851

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30

    Article  PubMed  Google Scholar 

  • Tan S, Gou Q, Pu W, Guo C, Yang Y, Wu K, Liu Y, Liu L, Wei YQ, Peng Y (2018) Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res 28:693–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Sun G, Jiang Y (2022) Cost-efficiency optimization serves as a conserved mechanism that promotes osteosarcoma in mammals. J Mol Evol 90:139–148

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gai Y, Li Y, Li C, Li Z, Wang X (2021) SARS-CoV-2 has the advantage of competing the iMet-tRNAs with human hosts to allow efficient translation. Mol Genet Genomics 296:113–118

    Article  CAS  PubMed  Google Scholar 

  • Wei L (2022) Reconciling the debate on deamination on viral RNA. J Appl Genet. https://doi.org/10.1007/s13353-022-00698-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie B, Zhao Z, Liu Q, Wang X, Ma Z, Li H (2019) CircRNA has_circ_0078710 acts as the sponge of microRNA-31 involved in hepatocellular carcinoma progression. Gene 683:253–261

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Hong YC, Ren ZZ, Tang K, Zhang H, Zhu JK, Zhao CZ (2019) A role for PICKLE in the regulation of cold and salt stress tolerance in Arabidopsis. Front Plant Sci 10:1

    Article  Google Scholar 

  • Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H et al (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 110:1

    Article  CAS  Google Scholar 

  • Yao R, Yao Y, Li C, Li X, Ni W, Quan R, Liu L, Li H, Xu Y, Zhang M et al (2020) Circ-HIPK3 plays an active role in regulating myoblast differentiation. Int J Biol Macromol 155:1432–1439

    Article  CAS  PubMed  Google Scholar 

  • Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, Xie X, Tang H (2019) circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in triple-negative breast cancer. Mol Ther Nucleic Acids 18:88–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu YY, Li Y, Dong Y, Wang XK, Li CX, Jiang WQ (2021) Natural selection on synonymous mutations in SARS-CoV-2 and the impact on estimating divergence time. Future Virol 16:447–450

    Article  CAS  Google Scholar 

  • Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu M, Dai X, Zhou H, Zhu J, Zhang H et al (2020) Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol Cancer 19:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Jin X, Wang H, Miao Y, Yang X, Jiang W, Yin B (2021a) Compelling evidence suggesting the codon usage of SARS-CoV-2 adapts to human after the split from RaTG13. Evol Bioinform Online 17:11769343211052012

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Jin X, Wang H, Miao Y, Yang X, Jiang W, Yin B (2022) SARS-CoV-2 competes with host mRNAs for efficient translation by maintaining the mutations favorable for translation initiation. J Appl Genet 63:159–167

    Article  CAS  PubMed  Google Scholar 

  • Zhang YP, Jiang W, Li Y, Jin XJ, Yang XP, Zhang PR, Jiang WQ, Yin B (2021b) Fast evolution of SARS-CoV-2 driven by deamination systems in hosts. Future Virol 16:587–590

    Article  PubMed  CAS  Google Scholar 

  • Zhao MM, Li CX, Dong Y, Wang XK, Jiang WQ, Chen YG (2022) Nothing in SARS-CoV-2 makes sense except in the light of RNA modification? Future Virol. https://doi.org/10.2217/fvl-2022-0043

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Song S, Qi Q, Lei W (2021) Cost-efficiency tradeoff is optimized in various cancer types revealed by genome-wide analysis. Mol Genet Genomics 296:369–378

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Liu X, Zhang W, Hu H, Wang Q, Xu K (2022a) MTHFD2 is a potential oncogene for its strong association with poor prognosis and high level of immune infiltrates in urothelial carcinomas of bladder. BMC Cancer 22:556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu L, Wang Q, Zhang W, Hu H, Xu K (2022b) Evidence for selection on SARS-CoV-2 RNA translation revealed by the evolutionary dynamics of mutations in UTRs and CDSs. RNA Biol 19:866–876

    Article  CAS  PubMed  Google Scholar 

  • Zong J, Zhang Y, Guo F, Wang C, Li H, Lin G, Jiang W, Song X, Zhang X, Huang F et al (2022) Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2. J Appl Genet 63:413–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our colleagues and any people in our institution who have given precious suggestions to this work.

Funding

The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

LW, MC, XP, BL: methodology, writing—original draft. JW: conceptualization, supervision, writing—original draft and writing—review and editing.

Corresponding author

Correspondence to Jinxiang Wang.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Handling editor: Kerry Geiler-Samerotte.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Cao, M., Pu, X. et al. The Sponge Interaction Between Circular RNA and microRNA Serves as a Fast-Evolving Mechanism That Suppresses Non-small Cell Lung Cancer (NSCLC) in Humans. J Mol Evol 90, 362–374 (2022). https://doi.org/10.1007/s00239-022-10067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-022-10067-z

Keywords

Navigation