Skip to main content
Log in

An Evolutionary Analysis of Flightin Reveals a Conserved Motif Unique and Widespread in Pancrustacea

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Flightin is a thick filament protein that in Drosophila melanogaster is uniquely expressed in the asynchronous, indirect flight muscles (IFM). Flightin is required for the structure and function of the IFM and is indispensable for flight in Drosophila. Given the importance of flight acquisition in the evolutionary history of insects, here we study the phylogeny and distribution of flightin. Flightin was identified in 69 species of hexapods in classes Collembola (springtails), Protura, Diplura, and insect orders Thysanura (silverfish), Dictyoptera (roaches), Orthoptera (grasshoppers), Pthiraptera (lice), Hemiptera (true bugs), Coleoptera (beetles), Neuroptera (green lacewing), Hymenoptera (bees, ants, and wasps), Lepidoptera (moths), and Diptera (flies and mosquitoes). Flightin was also found in 14 species of crustaceans in orders Anostraca (water flea), Cladocera (brine shrimp), Isopoda (pill bugs), Amphipoda (scuds, sideswimmers), and Decapoda (lobsters, crabs, and shrimps). Flightin was not identified in representatives of chelicerates, myriapods, or any species outside Pancrustacea (Tetraconata, sensu Dohle). Alignment of amino acid sequences revealed a conserved region of 52 amino acids, referred herein as WYR, that is bound by strictly conserved tryptophan (W) and arginine (R) and an intervening sequence with a high content of tyrosines (Y). This motif has no homologs in GenBank or PROSITE and is unique to flightin and paraflightin, a putative flightin paralog identified in decapods. A third motif of unclear affinities to pancrustacean WYR was observed in chelicerates. Phylogenetic analysis of amino acid sequences of the conserved motif suggests that paraflightin originated before the divergence of amphipods, isopods, and decapods. We conclude that flightin originated de novo in the ancestor of Pancrustacea > 500 MYA, well before the divergence of insects (~400 MYA) and the origin of flight (~325 MYA), and that its IFM-specific function in Drosophila is a more recent adaptation. Furthermore, we propose that WYR represents a novel myosin coiled-coil binding motif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Ayer G, Vigoreaux JO (2003) Flightin is a myosin rod binding protein. Cell Biochem Biophys 38:41–54

    Article  CAS  PubMed  Google Scholar 

  • Ayme-Southgate AJ, Southgate RJ, Philipp RA, Sotka EE, Kramp C (2008) The myofibrillar protein, projectin, is highly conserved across insect evolution except for its PEVK domain. J Mol Evol 67:653–669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barton B, Ayer G, Heymann N, Maughan DW, Lehmann FO, Vigoreaux JO (2005) Flight muscle properties and aerodynamic performance of Drosophila expressing a flightin transgene. J Exp Biol 208:549–560

    Article  CAS  PubMed  Google Scholar 

  • Barua B, Pamula MC, Hitchcock-DeGregori SE (2011) Evolutionarily conserved surface residues constitute actin binding sites of tropomyosin. Proc Natl Acad Sci USA 108:10150–10155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodsky AK (1994) The evolution of insect flight. Oxford University Press, Oxford

    Google Scholar 

  • Carapelli A, Lio P, Nardi F, van der Wath E, Frati F (2007) Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea. BMC Evol Biol 7(Suppl 2):S8.1471–S8.2148. doi:10.1186/1471-2148-7-S2-S8

    Article  Google Scholar 

  • Chakravorty S (2013) Role of the Drosophila melanogaster indirect flight muscles in flight and male courtship song: studies on flightin and myosin light chain-2. Biology. Ph.D. thesis, Burlington, University of Vermont, 339 pp

  • Chan WP, Dickinson MH (1996) In vivo length oscillations of indirect flight muscles in the fruit fly Drosophila virilis. J Exp Biol 199:2767–2774

    CAS  PubMed  Google Scholar 

  • Contompasis JL, Nyland LR, Maughan DW, Vigoreaux JO (2010) Flightin is necessary for length determination, structural integrity, and large bending stiffness of insect flight muscle thick filaments. J Mol Biol 395:340–348

    Article  CAS  PubMed  Google Scholar 

  • Dohle W (2001) Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name ‘Tetraconata’ for the monophyletic unit Crustacea+Hexapoda. Annales de la Societe Entomologique de France 37:85–103

    Google Scholar 

  • Domazet-Loso T, Tautz D (2003) An evolutionary analysis of orphan genes in Drosophila. Genome Res 13:2213–2219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Douglas SE (1995) DNA Strider. An inexpensive sequence analysis package for the Macintosh. Mol Biotechnol 3:37–45

    Article  CAS  PubMed  Google Scholar 

  • Dudley R (2000) The biomechanics of insect flight. Princeton University Press, Princeton

    Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  CAS  PubMed  Google Scholar 

  • Ferguson C, Lakey A, Hutchings A, Butcher GW, Leonard KR, Bullard B (1994) Cytoskeletal proteins of insect muscle: location of zeelins in Lethocerus flight and leg muscle. J Cell Sci 107:1115–1129

    CAS  PubMed  Google Scholar 

  • Flashman E, Watkins H, Redwood C (2007) Localization of the binding site of the C-terminal domain of cardiac myosin-binding protein-C on the myosin rod. Biochem J 401:97–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giribet G, Edgecombe GD (2012) Reevaluating the arthropod tree of life. Annu Rev Entomol 57:167–186

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi DA (2010) 400 million years on six legs: on the origin and early evolution of Hexapoda. Arthropod Struct Dev 39:191–203

    Article  PubMed  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Henkin JA, Maughan DW, Vigoreaux JO (2004) Mutations that affect flightin expression in Drosophila alter the viscoelastic properties of flight muscle fibers. Am J Physiol Cell Physiol 286:C65–C72

    Article  CAS  PubMed  Google Scholar 

  • Hyatt CJ, Maughan DW (1994) Fourier analysis of wing beat signals: assessing the effects of genetic alterations of flight muscle structure in Diptera. Biophys J 67:1149–1154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jenner RA (2010) Higher-level crustacean phylogeny: consensus and conflicting hypotheses. Arthropod Struct Dev 39:143–153

    Article  PubMed  Google Scholar 

  • Kreis T, Vale R (eds) (1999) Guidebook to the cytoskeletal and motor proteins. Oxford University Press, Oxford

    Google Scholar 

  • Kronert WA, O’Donnell PT, Fieck A, Lawn A, Vigoreaux JO, Sparrow JC, Bernstein SI (1995) Defects in the Drosophila myosin rod permit sarcomere assembly but cause flight muscle degeneration. J Mol Biol 249:111–125

    Article  CAS  PubMed  Google Scholar 

  • Macagno ER, Gaasterland T, Edsall L et al (2010) Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes. BMC Genomics 11:407. doi:10.1186/1471-2164-11-407

    Article  PubMed Central  PubMed  Google Scholar 

  • Maddison WP, Maddison DR (2002) MacClade: analysis of phylogeny and character evolution, version 4.05 for Mac OS X. Sinauer, Sunderland

  • Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191

    Article  CAS  PubMed  Google Scholar 

  • Marck C (1988) ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16:1829–1836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maughan D, Vigoreaux J (2004) Nature’s strategy for optimizing power generation in insect flight muscle. In: Sugi H (ed) Mysteries about the sliding filament mechanism: fifty years after its proposal. Plenum Press, New York

  • Miller MS, Tanner BCW, Nyland L, Vigoreaux JO (2010) Comparative biomechanics of thick filaments and thin filaments with functional consequences for muscle contraction. J Biomed Biotech 2010:14. doi:10.1155/2010/473423

    Google Scholar 

  • Miyamoto CA, Fischman DA, Reinach FC (1999) The interface between MyBP-C and myosin: site-directed mutagenesis of the CX myosin-binding domain of MyBP-C. J Muscle Res Cell Motil 20:703–715

    Article  CAS  PubMed  Google Scholar 

  • Moore JR (2006) Stretch activation: toward a molecular mechanism. In: Vigoreaux JO (ed) Nature’s versatile engine: insect flight muscle inside and out. Springer/Landes Biosci, New York, pp 44–60

    Chapter  Google Scholar 

  • Nardi F, Spinsanti G, Boore JL, Carapelli A, Dallai R, Frati F (2003) Hexapod origins: monophyletic or paraphyletic? Science 299:1887–1889

    Article  CAS  PubMed  Google Scholar 

  • Nongthomba U, Cummins M, Clark S, Vigoreaux JO, Sparrow JC (2003) Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Genetics 164:209–222

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nyland LR, Palmer BM, Chen Z, Maughan DW, Seidman CE, Seidman JG, Kreplak L, Vigoreaux JO (2009) Cardiac myosin binding protein-C is essential for thick-filament stability and flexural rigidity. Biophys J 96:3273–3280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Obermann WM, Gautel M, Weber K, Furst DO (1997) Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 16:211–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu F, Brendel S, Cunha PM, Astola N, Song B, Furlong EE, Leonard KR, Bullard B (2005) Myofilin, a protein in the thick filaments of insect muscle. J Cell Sci 118:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Reedy MC, Bullard B, Vigoreaux JO (2000) Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscles. J Cell Biol 151:1483–1499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Regier JC, Shultz JW, Kambic RE (2005) Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc Biol Sci 272:395–401

    Article  PubMed Central  PubMed  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Richter S (2002) The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org Divers Evol 2:217–237

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U, Baguna J, Riutort M (2002) A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci USA 99:11246–11251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheterline P, Clayton J, Sparrow J (1998) Actin. Oxford University Press, Oxford

    Google Scholar 

  • Tanner BC, Miller MS, Miller BM, Lekkas P, Irving TC, Maughan DW, Vigoreaux JO (2011) C-terminal truncation of flightin decreases myofilament lattice organization, cross-bridge binding, and power output in Drosophila indirect flight muscle. Am J Physiol Cell Physiol 301:C383–C391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vigoreaux JO (1994) Alterations in flightin phosphorylation in Drosophila flight muscles are associated with myofibrillar defects engendered by actin and myosin heavy chain mutant alleles. Biochem Genet 32:301–314

    Article  CAS  PubMed  Google Scholar 

  • Vigoreaux JO, Saide JD, Valgeirsdottir K, Pardue ML (1993) Flightin, a novel myofibrillar protein of Drosophila stretch-activated muscles. J Cell Biol 121:587–598

    Article  CAS  PubMed  Google Scholar 

  • Vigoreaux JO, Hernandez C, Moore J, Ayer G, Maughan D (1998) A genetic deficiency that spans the flightin gene of Drosophila melanogaster affects the ultrastructure and function of the flight muscles. J Exp Biol 201:2033–2044

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang X, Zhang H et al (2012) Coiled-coil networking shapes cell molecular machinery. Mol Biol Cell 23:3911–3922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson EO (1992) The diversity of life. W. W. Norton & Company, New York

    Google Scholar 

Download references

Acknowledgments

This research was supported by National Science Foundation awards IOS-0718417 and MCB-1050834 to JOV. FNSA was supported in part by Grant HL007944 from the National Institutes of Health. PAO was supported in part by NSF 0450339 AGEP. We thank Jesus G. Valenzuela and Claudio Meneses, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, for providing Lutzomya, and members of the Vigoreaux and Maughan labs for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim O. Vigoreaux.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soto-Adames, F.N., Alvarez-Ortiz, P. & Vigoreaux, J.O. An Evolutionary Analysis of Flightin Reveals a Conserved Motif Unique and Widespread in Pancrustacea. J Mol Evol 78, 24–37 (2014). https://doi.org/10.1007/s00239-013-9597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-013-9597-5

Keywords

Navigation