Skip to main content
Log in

Estimating the Relative Roles of Recombination and Point Mutation in the Generation of Single Locus Variants in Campylobacter jejuni and Campylobacter coli

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Single locus variants (SLVs) are bacterial sequence types that differ at only one of the seven canonical multilocus sequence typing (MLST) loci. Estimating the relative roles of recombination and point mutation in the generation of new alleles that lead to SLVs is helpful in understanding how organisms evolve. The relative rates of recombination and mutation for Campylobacter jejuni and Campylobacter coli were estimated at seven different housekeeping loci from publically available MLST data. The probability of recombination generating a new allele that leads to an SLV is estimated to be roughly seven times more than that of mutation for C. jejuni, but for C. coli recombination and mutation were estimated to have a similar contribution to the generation of SLVs. The majority of nucleotide differences (98 % for C. jejuni and 85 % for C. coli) between strains that make up an SLV are attributable to recombination. These estimates are much larger than estimates of the relative rate of recombination to mutation calculated from more distantly related isolates using MLST data. One explanation for this is that purifying selection plays an important role in the evolution of Campylobacter. A simulation study was performed to test the performance of our method under a range of biologically realistic parameters. We found that our method performed well when the recombination tract length was longer than 3 kb. For situations in which recombination may occur with shorter tract lengths, our estimates are likely to be an underestimate of the ratio of recombination to mutation, and of the importance of recombination for creating diversity in closely related isolates. A parametric bootstrap method was applied to calculate the uncertainty of these estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Biggs PJ, Fearnhead P, Hotter G, Mohan V, Collins-Emerson J, Kwan E, Besser TE, Cookson A, Carter PE, French NP (2011) Whole-genome comparison of two Campylobacter jejuni isolates of the same sequence type reveals multiple loci of different ancestral lineage. PLoS One 6(11):e27121

    Article  PubMed  CAS  Google Scholar 

  • Clark CG, Bryden L, Cuff WR, Johnson PL, Jamieson F, Ciebin B, Wang G (2005) Use of the Oxford multilocus sequence typing protocol and sequencing of the flagellin short variable region to characterize isolates from a large outbreak of waterborne Campylobacter sp. strains in Walkerton, Ontario, Canada. J Clin Microbiol 43:2080

    Article  PubMed  CAS  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Statist Soc Ser B 39(1):1–38

    Google Scholar 

  • Didelot X, Lawson D, Falush D (2009) Simmlst: simulation of multi-locus sequence typing data under a neutral model. Bioinformatics 25:1442

    Article  PubMed  CAS  Google Scholar 

  • Dingle KE, Colles FM, Wareing DRA, Ure R, Fox AJ, Bolton FE, Bootsma HJ, Willems RJL, Urwin R, Maiden MCJ (2001) Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol 39:14

    Article  PubMed  CAS  Google Scholar 

  • Fearnhead P, Smith NGC, Barrigas M, Fox A, French N (2005) Analysis of recombination in Campylobacter jejuni from MLST population data. J Mol Evol 61:333–340

    Article  PubMed  CAS  Google Scholar 

  • Feil EJ, Maiden MC, Achtman M, Spratt BG (1999) The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol Biol Evol 16:1496

    Article  PubMed  CAS  Google Scholar 

  • Feil EJ, Smith JM, Enright MC, Spratt BG (2000) Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics 154:1439

    PubMed  CAS  Google Scholar 

  • Feil EJ, Holmes EC, Bessen DE, Chan MS, Day NPJ, Enright MC, Goldstein R, Hood DW, Kalia A, Moore CE et al (2001) Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci 98:182

    Article  PubMed  CAS  Google Scholar 

  • Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518

    Article  PubMed  CAS  Google Scholar 

  • Guttman DS, Dykhuizen DE (1994) Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266:1380–1383

    Article  PubMed  CAS  Google Scholar 

  • Hein J, Schierup MH, Wiuf C (2005) Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford University Press, Oxford

    Google Scholar 

  • Humphrey T, O’Brien S, Madsen M (2007) Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol 117:237–257

    Article  PubMed  Google Scholar 

  • Jolley KA, Maiden MCJ (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11:595

    Article  PubMed  Google Scholar 

  • Konkel ME, Gray SA, Kim BJ, Garvis SG, Yoon J (1999) Identification of the enteropathogens Campylobacter jejuni and Campylobacter coli based on the cadF virulence gene and its product. J Clin Microbiol 37:510

    PubMed  CAS  Google Scholar 

  • Maiden MCJ, Bygraves JA, Feil EJ, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Nat Acad Sci USA 95:3140

    Article  PubMed  CAS  Google Scholar 

  • Meinersmann RJ, Hiett KL (2000) Concerted evolution of duplicate fla genes in Campylobacter. Microbiology 146:2283

    PubMed  CAS  Google Scholar 

  • Richman AD, Herrera LG, Nash D, Schierup MH (2003) Relative roles of mutation and recombination in generating allelic polymorphism at an MHC class II locus in Peromyscus maniculatus. Genet Res 82:89–99

    Article  PubMed  CAS  Google Scholar 

  • Sarkar SF, Guttman DS (2004) Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol 70:1999

    Article  PubMed  CAS  Google Scholar 

  • Schouls LM, Reulen S, Duim B, Wagenaar JA, Willems RJL, Dingle KE, Colles FM, Van Embden JDA (2003) Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J Clin Microbiol 41:15

    Article  PubMed  CAS  Google Scholar 

  • Sheppard SK, McCarthy ND, Falush D, Maiden MCJ (2008) Convergence of Campylobacter species: implications for bacterial evolution. Science 320:237–239

    Article  PubMed  CAS  Google Scholar 

  • Sheppard SK, Dallas JF, Wilson DJ, Strachan NJC, McCarthy ND, et al. (2010) Evolution of an agriculture-associated disease causing Campylobacter coli clade: evidence from National Surveillance Data in Scotland. PLoS ONE 5(12)

  • Sheppard SK, McCarthy ND, Jolley KA, Maiden MCJ (2011) Introgression in the genus Campylobacter: generation and spread of mosaic alleles. Microbiology 157:1066–1074

    Article  PubMed  CAS  Google Scholar 

  • Suerbaum S, Lohrengel M, Sonnevend A, Ruberg F, Kist M (2001) Allelic diversity and recombination in Campylobacter jejuni. J Bacteriol 183:2553

    Article  PubMed  CAS  Google Scholar 

  • Tauxe RV, Nachamkin I, Blaser MJ, Tompkins LS (1992) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. MBio, Washington, DC

    Google Scholar 

  • Vos M, Didelot X (2008) A comparison of homologous recombination rates in bacteria and archaea. ISME J 3:199–208

    Article  PubMed  Google Scholar 

  • Wilson DJ, Gabriel E, Leatherbarrow AJH, Cheesbrough J, Gee S, Bolton E, Fox A, Hart CA, Diggle PJ, Fearnhead P (2009) Rapid evolution and the importance of recombination to the gastroenteric pathogen Campylobacter jejuni. Mol Biol Evol 26:385

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Meitzler JC, Huang S, Morishita T (2000) Sequence polymorphism, predicted secondary structures, and surface-exposed conformational epitopes of Campylobacter major outer membrane protein. Infect Immun 68:5679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Marsden Fund project 08-MAU-099 (Cows, starlings and Campylobacter in New Zealand: unifying phylogeny, genealogy, and epidemiology to gain insight into pathogen evolution) for funding this project. This publication made use of the Campylobacter Multi Locus Sequence Typing website (http://pubmlst.org/campylobacter/) developed by Keith Jolley and sited at the University of Oxford (Jolley and Maiden 2010, BMC Bioinformatics, 11:595). The development of this site has been funded by the Wellcome Trust. BRH acknowledges the Australian Research Council (Grant FT100100031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel French.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, S., Fearnhead, P., Holland, B.R. et al. Estimating the Relative Roles of Recombination and Point Mutation in the Generation of Single Locus Variants in Campylobacter jejuni and Campylobacter coli . J Mol Evol 74, 273–280 (2012). https://doi.org/10.1007/s00239-012-9505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-012-9505-4

Keywords

Navigation