Skip to main content
Log in

Circadian Input Kinases and Their Homologs in Cyanobacteria: Evolutionary Constraints Versus Architectural Diversification

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The circadian input kinase A (cikA) gene encodes a protein relaying environmental signal to the central circadian oscillator in cyanobacteria. The CikA protein has a variable architecture and usually consists of four tandemly arrayed domains: GAF, histidine kinase (HisKA), histidine kinase-like ATPase (HATPase_c), and a pseudo-receiver (REC). Among them, HisKA and HATPase_c are the least polymorphic, and REC is not present in heterocystic filamentous cyanobacteria. CikA contains several conserved motifs that are likely important for circadian function. There are at least three types of circadian systems, each of which possesses a different set of circadian genes. The originally described circadian system (kaiABC system) possesses both cikA and kaiA, while the others lack either only cikA (kaiABC Δ) or both (kaiBC). The results we obtained allowed us to approximate the time of the cikA origin to be about 2600–2200 MYA and the time of its loss in the species with the kaiABC Δ or kaiBC system between 1100 and 600 MYA. Circadian specialization of CikA, as opposed to its non-circadian homologs, is a result of several factors, including the unique conserved domain architecture and high evolutionary constraints of some domains and regions, which were previously identified as critical for the circadian function of the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CikA:

Circadian input kinase A

MYA:

Million years ago

NCBI:

National Center for Biotechnology Information

References

  • Altermann W, Kazmierczak J (2003) Archean microfossils: a reappraisal of early life on earth. Res Microbiol 154:611–617

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552

    Article  PubMed  Google Scholar 

  • Axmann IM, Duhring U, Seeliger L, Arnold A, Vanselow JT, Kramer A, Wilde A (2009) Biochemical evidence for a timing mechanism in Prochlorococcus. J Bacteriol 191:5342–5347

    Article  CAS  PubMed  Google Scholar 

  • Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, Fariselli P, Casadio R, Ben-Tal N (2004) ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20:1322–1324

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE, Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–132

    Article  CAS  PubMed  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  PubMed  Google Scholar 

  • Cornilescu G, Ulijasz AT, Cornilescu CC, Markley JL, Vierstra RD (2008) Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state. J Mol Biol 383:403–413

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS, Ostrowski M, Oztas S, Robert C, Rogozin IB, Scanlan DJ, Tandeau de Marsac N, Weissenbach J, Wincker P, Wolf YI, Hess WR (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci USA 100:10020–10025

    Article  CAS  PubMed  Google Scholar 

  • Dutta R, Qin L, Inouye M (1999) Histidine kinases: diversity of domain organization. Mol Microbiol 34:633–640

    Article  CAS  PubMed  Google Scholar 

  • Dvornyk V (2005) Molecular evolution of ldpA, a gene mediating circadian input signal in cyanobacteria. J Mol Evol 60:105–112

    Article  CAS  PubMed  Google Scholar 

  • Dvornyk V (2006a) Evolution of the circadian clock mechanism in prokaryotes. Isr J Ecol Evol 52:343–357

    Article  Google Scholar 

  • Dvornyk V (2006b) Subfamilies of cpmA, a gene involved in circadian output, have different evolutionary histories in cyanobacteria. Microbiology 152:75–84

    Article  CAS  PubMed  Google Scholar 

  • Dvornyk V (2009) The circadian clock gear in cyanobacteria: assembled by evolution. In: Ditty JL, Mackey S, Johnson CH (eds) Bacterial Circadian Programs. Springer-Verlag, Berlin-Heidelberg, pp 241–258

    Chapter  Google Scholar 

  • Dvornyk V, Knudsen B (2005) Functional divergence of circadian clock proteins in prokaryotes. Genetica 124:247–254

    Article  PubMed  Google Scholar 

  • Dvornyk V, Vinogradova ON, Nevo E (2003) Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci USA 100:2495–2500

    Article  CAS  PubMed  Google Scholar 

  • Dvornyk V, Deng HW, Nevo E (2004) Structure and molecular phylogeny of sasA genes in cyanobacteria: insights into evolution of the prokaryotic circadian system. Mol Biol Evol 21:1468–1476

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Fankhauser C (2001) The phytochromes, a family of red/far-red absorbing photoreceptors. J Biol Chem 276:11453–11456

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F (1998) Solar ultraviolet and the evolutionary history of cyanobacteria. Orig Life Evol Biosph 28:321–347

    Article  CAS  PubMed  Google Scholar 

  • Golden SS, Canales SR (2003) Cyanobacterial circadian clocks––timing is everything. Nature Rev Microbiol 1:191–199

    Article  CAS  Google Scholar 

  • Graur D, Li WH (2000) Fundamentals of molecular evolution. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Holtzendorff J, Partensky F, Mella D, Lennon JF, Hess WR, Garczarek L (2008) Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. J Biol Rhythms 23:187–199

    Article  CAS  PubMed  Google Scholar 

  • Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48:723–739

    Article  CAS  PubMed  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523

    Article  CAS  PubMed  Google Scholar 

  • Ivleva NB, Bramlett MR, Lindahl PA, Golden SS (2005) LdpA: a component of the circadian clock senses redox state of the cell. EMBO J 24:1202–1210

    Article  CAS  PubMed  Google Scholar 

  • Ivleva NB, Gao T, LiWang AC, Golden SS (2006) Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock. Proc Natl Acad Sci USA 103:17468–17473

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki H, Williams SB, Kitayama Y, Ishiura M, Golden SS, Kondo T (2000) A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101:223–233

    Article  CAS  PubMed  Google Scholar 

  • Kazmierczak J, Altermann W (2002) Neoarchean biomineralization by benthic cyanobacteria. Science 298:2351

    Article  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kitayama Y, Iwasaki H, Nishiwaki T, Kondo T (2003) KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system. EMBO J 22:2127–2134

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Ishiura M (1999) The circadian clocks of plants and cyanobacteria. Trends Plant Sci 4:171–176

    Article  PubMed  Google Scholar 

  • Kosakovsky-Pond SL, Frost SD, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Li W-H (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lagarias JC (1992) Phytochrome assembly. Defining chromophore structural requirements for covalent attachment and photoreversibility. J Biol Chem 267:19204–19210

    CAS  PubMed  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB III, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50:437–450

    Article  CAS  PubMed  Google Scholar 

  • Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA, Liu C, Madej T, Marchler GH, Mazumder R, Nikolskaya AN, Panchenko AR, Rao BS, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Vasudevan S, Wang Y, Yamashita RA, Yin JJ, Bryant SH (2003) CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31:383–387

    Article  CAS  PubMed  Google Scholar 

  • Müller-Dieckmann HJ, Grantz AA, Kim SH (1999) The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1. Structure 7:1547–1556

    Article  PubMed  Google Scholar 

  • Mutsuda M, Michel KP, Zhang X, Montgomery BL, Golden SS (2003) Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942. J Biol Chem 278:19102–19110

    Article  CAS  PubMed  Google Scholar 

  • Nagaya M, Aiba H, Mizuno T (1993) Cloning of a sensory-kinase-encoding gene that belongs to the two-component regulatory family from the cyanobacterium Synechococcus sp. PCC7942. Gene 131:119–124

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10:137–145

    Article  CAS  PubMed  Google Scholar 

  • Narikawa R, Kohchi T, Ikeuchi M (2008) Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr1969) of the cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol Sci 7:1253–1259

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  CAS  PubMed  Google Scholar 

  • Nicholas KB, Nicholas HB Jr (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments Zh Obshch Biol:65(4):278–305

    Google Scholar 

  • Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910

    Article  CAS  PubMed  Google Scholar 

  • Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol 10:271–281

    CAS  PubMed  Google Scholar 

  • Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Robertson BR, Tezuka N, Watanabe MM (2001) Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 51:861–871

    CAS  PubMed  Google Scholar 

  • Schaffer AA, Wolf YI, Ponting CP, Koonin EV, Aravind L, Altschul SF (1999) IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed position-specific score matrices. Bioinformatics 15:1000–1011

    Article  CAS  PubMed  Google Scholar 

  • Schmitz O, Katayama M, Williams SB, Kondo T, Golden SS (2000) CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289:765–768

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of archean life: stromatolites and microfossils. Precambrian Res 158:141–155

    Article  CAS  Google Scholar 

  • Schwartz RS, Mueller RL (2010) Branch length estimation and divergence dating: estimates of error in Bayesian and maximum likelihood frameworks. BMC Evol Biol 10:5

    Article  PubMed  Google Scholar 

  • Solá M, Gomis-Rüth FX, Serrano L, González A, Coll M (1999) Three-dimensional crystal structure of the transcription factor PhoB receiver domain. J Mol Biol 285:675–687

    Article  PubMed  Google Scholar 

  • Stock J (1999) Signal transduction: gyrating protein kinases. Curr Biol 9:R364–R367

    Article  CAS  PubMed  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103:5442–5447

    Article  CAS  PubMed  Google Scholar 

  • Urbach E, Scanlan DJ, Distel DL, Waterbury JB, Chisholm SW (1998) Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol 46:188–201

    Article  CAS  PubMed  Google Scholar 

  • Wagner JR, Zhang J, Brunzelle JS, Vierstra RD, Forest KT (2007) High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J Biol Chem 282:12298–12309

    Article  CAS  PubMed  Google Scholar 

  • Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12:1073–1086

    Article  CAS  PubMed  Google Scholar 

  • Walsh MM (1992) Microfossils and possible microfossils from the early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res 54:271–293

    Article  CAS  PubMed  Google Scholar 

  • Wernersson R, Pedersen AG (2003) RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31:3537–3539

    Article  CAS  PubMed  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    CAS  PubMed  Google Scholar 

  • Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481–1486

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Mori T, Johnson CH (2003) Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. EMBO J 22:2117–2126

    Article  CAS  PubMed  Google Scholar 

  • Yanai I, Wolf YI, Koonin EV (2002) Evolution of gene fusions: horizontal transfer versus independent events. Genome Biol 3:RESEARCH0024

    Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Stojkovic EA, Kuk J, Moffat K (2007) Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion. Proc Natl Acad Sci USA 104:12571–12576

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Dong G, Golden SS (2006) The pseudo-receiver domain of CikA regulates the cyanobacterial circadian input pathway. Mol Microbiol 60:658–668

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the University of Hong Kong start-up fund for VD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Dvornyk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baca, I., Sprockett, D. & Dvornyk, V. Circadian Input Kinases and Their Homologs in Cyanobacteria: Evolutionary Constraints Versus Architectural Diversification. J Mol Evol 70, 453–465 (2010). https://doi.org/10.1007/s00239-010-9344-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9344-0

Keywords

Navigation