Skip to main content
Log in

Evolution of +1 Programmed Frameshifting Signals and Frameshift-Regulating tRNAs in the Order Saccharomycetales

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Programmed translational frameshifting is a ubiquitous but rare mechanism of gene expression in which mRNA sequences cause the translational machinery to shift reading frames with extreme efficiency, up to at least 50%. The mRNA sequences responsible are deceptively simple; the sequence CUU-AGG-C causes about 40% frameshifting when inserted into an mRNA in the yeast Saccharomyces cerevisiae. The high efficiency of this site depends on a set of S. cerevisiae tRNA isoacceptors that perturb the mechanism of translation to cause the programmed translational error. The simplicity of the system might suggest that it could evolve frequently and perhaps be lost as easily. We have investigated the history of programmed +1 frameshifting in fungi. We find that frameshifting has persisted in two structural genes in budding yeasts, ABP140 and EST3 for about 150 million years. Further, the tRNAs that stimulate the event are equally old. Species that diverged from the lineage earlier both do not employ frameshifting and have a different complement of tRNAs predicted to be inimical to frameshifting. The stability of the coevolution of protein coding genes and tRNAs suggests that frameshifting has been selected for during the divergence of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asakura T, Sasaki T, Nagano F, Satoh A, Obaishi H, Nishioka H, Imamura H, Hotta K, Tanaka K, Nakanishi H, Takai Y (1998) Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae. Oncogene 16:121–130

    Article  PubMed  CAS  Google Scholar 

  • Baranov PV, Gesteland RF, Atkins JF (2002) Recoding: translational bifurcations in gene expression. Gene 286:187–201

    Article  PubMed  CAS  Google Scholar 

  • Belcourt MF, Farabaugh PJ (1990) Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62:339–352

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Rossi M, Moracci M (2005) Recoding in archaea. Mol Microbiol 55:339–348

    Article  PubMed  CAS  Google Scholar 

  • Diezrnann S, Cox CJ, Schonian G, Vilgalys RJ, Mitchell TG (2004) Phylogeny and evolution of medical species of Candida and related taxa: a multigenic analysis. J Clin Microbiol 42:5624–5635

    Article  Google Scholar 

  • Farabaugh PJ (1996) Programmed translational frameshifting. Microbiol Rev 60:103–134

    PubMed  CAS  Google Scholar 

  • Gallant JA, Lindsley D (1998) Ribosomes can slide over and beyond “hungry” codons, resuming protein chain elongation many nucleotides downstream. Proc Natl Acad Sci USA 95:13771–13776

    Article  PubMed  CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  PubMed  CAS  Google Scholar 

  • Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903–919

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Friedman R (2003) Parallel evolution by gene duplication in the genomes of two unicellularfungi. Genome Res 13:794–799

    Article  PubMed  CAS  Google Scholar 

  • Ikemura T (1982) Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. J Mol Biol 158:573–597

    Article  PubMed  CAS  Google Scholar 

  • Ivanov IP, Matsufuji S, Murakami Y, Gesteland RF, Atkins JF (2000) Conservation of polyamine regulation by translational frameshifting from yeast to mammals. EMBO J 19:1907–1917

    Article  PubMed  CAS  Google Scholar 

  • Katz JE, Dlakic M, Clarke S (2003) Automated identification of putative methyltransferases from genomic open reading frames. Mol Gell Proteomics 2:525–540

    CAS  Google Scholar 

  • Kurland CG (1992) Translational accuracy and the fitness of bacteria. Annu Rev Genet 26:29–50

    PubMed  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432

    Article  PubMed  CAS  Google Scholar 

  • Langkjaer RB, Cliften PF, Johnston M, Piskur J (2003) Yeast genome duplicatioro was followed by asynchronous differentiation of duplicated genes. Nature 421:848–852

    Article  PubMed  CAS  Google Scholar 

  • Lindsley D, Gallant J, Doneanu C, Bonthuis P, Caldwell S, Fontelera A (2005) Spontaneous ribosome bypassing in growing cells. J Mol Biol 349:261–272

    Article  PubMed  CAS  Google Scholar 

  • Llorente B, Malpertuy A, Neuveglise C, de Montigny J, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, Casaregola S, Durrens P, Gaillardin C, Lepingle A, Ozier-Kalogeropoulos O, Potier S, Saurin W, Tekaia F, Toffano-Nioche C, Wesolowski-Louvel M, Wincker P, Weissenbach J, Souciet J, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiae. FEBS Lett 487:101–112

    Article  PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  CAS  Google Scholar 

  • Marck C (1988) ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16:1829–1836

    PubMed  CAS  Google Scholar 

  • Massey SE, Moura G, Beltrao P, Almeida R, Garey JR, Tuite MF, Santos MA (2003) Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res 13:544–557

    Article  PubMed  CAS  Google Scholar 

  • McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W205

    Article  PubMed  CAS  Google Scholar 

  • Morris DK, Lundblad V (1997) Programmed translational frameshifting in a gene required for yeast telomere replication. Gurr Biol 7:969–976

    Article  CAS  Google Scholar 

  • Namy O, Rousset JP, Napthine S, Brierley I (2004) Reprogrammed genetic decoding in cellular gene expression. Mol Cell 13:157–168

    Article  PubMed  CAS  Google Scholar 

  • Palanimurugan R, Scheel H, Hofmann K, Dohmen RJ (2004) Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. EMBO J 23:4857–4867

    Article  PubMed  CAS  Google Scholar 

  • Pande S, Vimaladithan A, Zhao H, Farabaugh PJ (1995) Pulling the ribosome out of frame +1 at a programmed frameshift site by cognate binding of aminoacyl-tRNA. Mol Gell Biol 15:298–304

    CAS  Google Scholar 

  • Percudani R, Pavesi A, Ottonello S (1997) Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol 268:322–330

    Article  PubMed  CAS  Google Scholar 

  • Perriere G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  CAS  Google Scholar 

  • Randerath E, Gupta RC, Chia LLSY, Chang SH, Randerath K (1979) Yeast tRNA Leu UAG. Purification, properties, and determination of the nucleotide sequence by radioactive derivative methods. Eur J Biochem 93:79–94

    Article  PubMed  CAS  Google Scholar 

  • Santos MA, Moura G, Massey SE, Tuite MF (2004) Driving change: the evolution of alternative genetic codes. Trends Genet 20:95–102

    Article  PubMed  CAS  Google Scholar 

  • Seoighe G, Wolfe KH (1999) Updated map of duplicated regions in the yeast genome. Gene 238:253–261

    Article  PubMed  CAS  Google Scholar 

  • Stahl G, McCarty GP, Farabaugh PJ (2002) Ribosome structure: revisiting the connection between translational accuracy and unconventional decoding. Trends Biochem Sci 27:178–183

    Article  PubMed  CAS  Google Scholar 

  • Sundararajan A, Michaud WA, Qian Q, Stahl G, Farabaugh PJ (1999) Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast. Mol Cell 4:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Weiss RB, Dunn DM, Atkins JF, Gesteland RF (1987) Slippery runs, shifty stops, backward steps, and forward hops: −2, −1, +1, +2, +5, and +6 ribosomal frameshifting. Cold Spring Harbor Symp Quant Biol 52:687–693

    PubMed  CAS  Google Scholar 

  • Weiss R, Dunn D, Dahlberg A, Atkins J, Gesteland R (1998) Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J 7:1503–1507

    Google Scholar 

  • Weiss R, Huang W, Dunn D (1990) A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell 62:117–126

    Article  PubMed  CAS  Google Scholar 

  • Weissenbach J, Dirheimer G, Falcoff R, Sanceau J, Falcoff E (1977) Yeast tRNALeu (anticodon U-A-G) translates all six leucine codons in extracts from interferon treated cells. FEBS Lett 82:71–76

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Shields DG (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  PubMed  CAS  Google Scholar 

  • Wong S, Butler G, Wolfe KH (2002) Gene order evolution and paleopolyploidy in hemiascomycete yeasts. Proc Natl Acad Sci USA 99:9272–9277

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Nishimura S (1995) Modified nucleosides and codon recognition. In: Söll D, RajBhandary U (eds) tRNA: structure, biosynthesis and function. ASM Press, Washington, DC, pp 207–223

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Institute of General Medical Sciences (GM 29480-24). Part of the work was performed while P.J.F. was a visiting scientist at the Universite‘ Paris XI, Orsay, France, supported by the Centre Nationale de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Farabaugh.

Additional information

[Reviewing Editor: Dr. Niles Lehman]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farabaugh, P.J., Kramer, E., Vallabhaneni, H. et al. Evolution of +1 Programmed Frameshifting Signals and Frameshift-Regulating tRNAs in the Order Saccharomycetales. J Mol Evol 63, 545–561 (2006). https://doi.org/10.1007/s00239-005-0311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0311-0

Keywords

Navigation