Skip to main content
Log in

Evolutionary Conservation of Protein Backbone Flexibility

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Internal protein dynamics is essential for biological function. During evolution, protein divergence is functionally constrained: properties more relevant for function vary more slowly than less important properties. Thus, if protein dynamics is relevant for function, it should be evolutionary conserved. In contrast with the well-studied evolution of protein structure, the evolutionary divergence of protein dynamics has not been addressed systematically before, apart from a few case studies. X-Ray diffraction analysis gives information not only on protein structure but also on B-factors, which characterize the flexibility that results from protein dynamics. Here we study the evolutionary divergence of protein backbone dynamics by comparing the Cα flexibility (B-factor) profiles for a large dataset of homologous proteins classified into families and superfamilies. We show that Cα flexibility profiles diverge slowly, so that they are conserved at family and superfamily levels, even for pairs of proteins with nonsignificant sequence similarity. We also analyze and discuss the correlations among the divergences of flexibility, sequence, and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Agresti A, Coul BA (1998) Approximate is better than “exact” for interval estimation of binomial proportions. Am Stat 52:119–126

    Article  Google Scholar 

  • Artymiuk PJ, Blake CCF, Grace DEP, Oatley SJ, Phillips DC, Sternberg MJE (1979) Crystallographic studies of the dynamic properties of Lysozyme. Nature 280:563–568

    Article  PubMed  CAS  Google Scholar 

  • Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181

    Article  PubMed  CAS  Google Scholar 

  • Bayley GV, Hammersley JM (1946) The “effective” number of independent observations in autocorrelated time series. J Roy Stat Soc Suppl 8:184–197

    Article  Google Scholar 

  • Bourgeois D, Vallone B, Schotte F, Arcovito A, Miele AE, Sciara G, Wulff M, Anfinrud P, Brunori M (2003) Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography. Proc Natl Acad Sci USA 100:8704–8709

    Article  PubMed  CAS  Google Scholar 

  • Case DA, Karplus M (1979) Dynamics of ligand-binding to heme-proteins. J Mol Biol 132:343–368

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Gerstein M (1997) Protein evolution—How far can sequences diverge? Nature 385:579–580

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    PubMed  CAS  Google Scholar 

  • Cohen J, Cohen P (1983) Applied multiple regression/correlation analysis for the behavioral sciences, 2nd ed. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • Daniel RM, Dunn RV, Finney JL, Smith JC (2003) The role of dynamics in enzyme activity. Annu Rev Biophys Biomol Struct 32:69–92

    Article  PubMed  CAS  Google Scholar 

  • Debrunner PG, Frauenfelder H (1982) Dynamics of proteins. Annu Rev Phys Chem 33:283–299

    Article  CAS  Google Scholar 

  • Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent x-ray-diffraction as a probe of protein structural dynamics. Nature 280:558–563

    Article  PubMed  CAS  Google Scholar 

  • Frauenfelder H, Mcmahon BH, Fenimore PW (2003) Myoglobin: the hydrogen atom of biology and a paradigm of complexity. Proc Natl Acad Sci USA 100:8615–8617

    Article  PubMed  CAS  Google Scholar 

  • Halle B (2002) Flexibility and packing in proteins. Proc Natl Acad Sci USA 99:1274–1279

    Article  PubMed  CAS  Google Scholar 

  • Hubbard TJP, Murzin AG, Brenner SE, Chothia C (1997) Scop: a structural classification of proteins database. Nucleic Acids Res 25:236–239

    Article  PubMed  CAS  Google Scholar 

  • Keskin O, Jernigan RL, Bahar I (2000) Proteins with similar architecture exhibit similar large-scale dynamic behaviour. Biophys J 78:2093–2106

    PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kundu S, Melton JS, Sorensen DC, Phillips GN (2002) Dynamics of proteins in crystals: comparison of experiment with simple models. Biophys J 83:723–732

    PubMed  CAS  Google Scholar 

  • Lindorff-Larsen K, Best RB, Depristo MA, Dobson CM, Vendruscolo M (2005) Simultaneous determination of protein structure and dynamics. Nature 433:128–132

    Article  PubMed  CAS  Google Scholar 

  • Maguid S, Fernandez Alberti S, Ferrelli L, Echave J (2005) Exploring the common dynamics of homologous proteins. Application to the globin family. Biophys J 89:3–13

    Article  PubMed  CAS  Google Scholar 

  • Maiorov VN, Crippen GM (1995) Size-independent comparison of protein three-dimensional structures. Proteins 22:273–283

    Article  PubMed  CAS  Google Scholar 

  • Micheletti C, Carloni P, Maritan A (2004) Accurate and efficient description of protein vibrational dynamics: comparing molecular dynamics and gaussian models. Proteins 55:635–645

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi K, Deane CM, Blundell TL, Overington JP (1998) Homstrad: a database of protein structure alignments for homologous families. Protein Sci 7:2469–2471

    Article  PubMed  CAS  Google Scholar 

  • Ortiz AR, Strauss CEM, Olmea O (2002) MAMMOTH (Matching Molecular Models Obtained From Theory): an automated method for model comparison. Protein Sci 11:2606–2621

    Article  PubMed  CAS  Google Scholar 

  • Parak FG (2003) Physical aspects of protein dynamics. Rep Prog Phys 66:103–129

    Article  CAS  Google Scholar 

  • Parisi G, Echave J (2005) Generality of the structurally constrained protein evolution model: assessment on representatives of the four main fold classes. Gene 345:45–53

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF, Mathews FS (1966) An x-ray study of Azide Methaemoglobin. J Mol Biol 21:199–202

    Article  PubMed  CAS  Google Scholar 

  • Porto M, Roman HE, Vendruscolo M, Bastolla U (2005) Prediction of site-specific amino acid distributions and limits of divergent evolutionary changes in protein sequences. Mol Biol Evol 22:630–638

    Article  PubMed  CAS  Google Scholar 

  • Ringe D, Petsko GA (1985) Mapping protein dynamics by x-ray-diffraction. Prog Biophys Mol Biol 45:197–235

    Article  PubMed  CAS  Google Scholar 

  • Rost B (1997) Protein structures sustain evolutionary drift. Fold Des 2:S19–S24

    Article  PubMed  CAS  Google Scholar 

  • Russell RB, Saqi MAS, Sayle RA, Bates PA, Sternberg MJE (1997) Recognition of analogous and homologous protein folds: analysis of sequence and structure conservation. J Mol Biol 269:423–439

    Article  PubMed  CAS  Google Scholar 

  • Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J, Olson JS, Phillips GN Jr, Wulff M, Anfinrud PA (2003) Watching a protein as it functions with 150-ps time-resolved x-ray crystallography. Science 300:1944–1977

    Article  PubMed  CAS  Google Scholar 

  • Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G (2003) Improved amino acid flexibility parameters. Protein Sci 12:1060–1072

    Article  PubMed  CAS  Google Scholar 

  • Sowdhamini R, Burke DF, Huang JF, Mizuguchi K, Nagarajaram HA, Srinivasan N, Steward RE, Blundell TL (1998) Campass: a database of structurally aligned protein superfamilies. Structure 6:1087–1094

    Article  PubMed  CAS  Google Scholar 

  • Stebbings LA, Mizuguchi K (2004) Homstrad: recent developments of the homologous protein structure alignment database. Nucleic Acids Res 32:D203–D207

    Article  PubMed  CAS  Google Scholar 

  • Sternberg MJE, Grace DEP, Phillips DC (1979) Dynamic information from protein crystallography—analysis of temperature factors from refinement of the hen egg-white lysozyme structure. J Mol Biol 130:231–252

    Article  PubMed  CAS  Google Scholar 

  • Vollset SE (1993) Confidence intervals for a binomial proportion. Stat Med 12:809–824

    PubMed  CAS  Google Scholar 

  • Wampler JE (1997) distribution analysis of the variation of b-factors of x-ray crystal structures: temperature and structural variations in lysozyme. J Chem Inf Comput Sci 37:1171-1180

    Article  PubMed  CAS  Google Scholar 

  • Wood TC, Pearson WR (1999) Evolution of protein sequences and structures. J Mol Biol 291:977–995

    Article  PubMed  CAS  Google Scholar 

  • Yuan Z, Bailey TL, Teasdale RD (2005) Prediction of protein B-factor profiles. Proteins 58:905–912

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J.E. acknowledges stimulating discussions with Ugo Bastolla and would like to thank Majed Chergui, Marie Agnès Gassama, and Patricia Esteche for their support. G.P., S.F.A., and J.E. are researchers of CONICET. This work was partially supported by CONICET, ANPCyT, and UNQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Echave.

Additional information

[Reviewing Editor: Dr. David Pollock]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maguid, S., Fernández-Alberti, S., Parisi, G. et al. Evolutionary Conservation of Protein Backbone Flexibility. J Mol Evol 63, 448–457 (2006). https://doi.org/10.1007/s00239-005-0209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0209-x

Keywords

Navigation