Skip to main content
Log in

Molecular Clock and Gene Function

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Molecular phylogenies based on the molecular clock require the comparison of orthologous genes. Orthologous and paralogous genes usually have very different evolutionary fates. In general, orthologs keep the same functions in species, whereas, particularly over a long time span, paralogs diverge functionally and may become pseudogenes or get lost. In eukaryotic genomes, because of the degree of redundancy of genetic information, homologous genes are grouped in gene families, the evolution of which may differ greatly between the various organisms. This implies that each gene in a species does not always have an ortholog in another species and thus, due to multiple duplication events following a speciation, many orthologous clades of paralogs are generated. We are often dealing with a one-to-many or many-to-many relationship between genes. In this paper, we analyze the evolution of two gene families, the p53 gene family and the porin gene family. The evolution of the p53 family shows a one-to-many gene relationship going from invertebrates to vertebrates. In invertebrates only a single gene has been found, while in vertebrates three members of the family, namely p53, p63, and p73, are present. The evolution of porin (VDAC) genes (VDAC1, VDAC2, and VDAC3) is an example of a many-to-many gene relationship going from yeast to mammals. However, the porin gene redundancy found in invertebrates and possibly in some fishes may indicate a tendency to duplicate the genetic material, rather than a real need for function innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FJ Ayala (2000) ArticleTitleNeutralism and selectionism: The molecular clock. Gene 261 27–33 Occurrence Handle10.1016/S0378-1119(00)00479-0 Occurrence Handle1:CAS:528:DC%2BD3MXmvF2msg%3D%3D Occurrence Handle11164034

    Article  CAS  PubMed  Google Scholar 

  2. P Bernardi KM Broekemeier DR Pfeiffer (1994) ArticleTitleRecent progress on regulation of the mitochondrial permeability transition pore; A cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr 26 509–517 Occurrence Handle1:CAS:528:DyaK2MXisFSjurc%3D Occurrence Handle7896766

    CAS  PubMed  Google Scholar 

  3. P Bernardi V Petronilli F Di Lisa M Forte (2001) ArticleTitleA mitochondrial perspective on cell death. Trends Biochem Sci 26 112–117 Occurrence Handle1:CAS:528:DC%2BD3MXptV2gtw%3D%3D Occurrence Handle11166569

    CAS  PubMed  Google Scholar 

  4. E Blachly-Dyson M Forte (2001) ArticleTitleVDAC channels. IUBMB Life 52 113–118 Occurrence Handle10.1080/15216540152845902 Occurrence Handle1:CAS:528:DC%2BD38Xlt1WmtQ%3D%3D Occurrence Handle11798022

    Article  CAS  PubMed  Google Scholar 

  5. R Casadio I Jacoboni A Messina V De Pinto (2002) ArticleTitleA 3D model of the voltage-dependent anion channel (VDAC). FEBS Lett 520 1–7 Occurrence Handle10.1016/S0014-5793(02)02758-8 Occurrence Handle1:CAS:528:DC%2BD38XktFOgsbk%3D Occurrence Handle12044860

    Article  CAS  PubMed  Google Scholar 

  6. M Colombini (1989) ArticleTitleVoltage gating in the mitochondrial channel, VDAC. J Membr Biol 111 103–111 Occurrence Handle1:STN:280:By%2BC3szosFQ%3D Occurrence Handle2482359

    CAS  PubMed  Google Scholar 

  7. M Colombini E Blachly-Dyson M Forte (1996) ArticleTitleVDAC, a channel in the outer mitochondrial membrane. Ion Channels 4 169–202 Occurrence Handle1:CAS:528:DyaK28Xkt1ehurw%3D Occurrence Handle8744209

    CAS  PubMed  Google Scholar 

  8. V De Laurenzi A Costanzo D Barcaroli A Terrinoni M Falco M Annicchiarico-Petruzzelli et al. (1998) ArticleTitleTwo new p73 splice variants, gamma and delta, with different transcriptional activity. J Exp Med 188 1763–1768 Occurrence Handle10.1084/jem.188.9.1763 Occurrence Handle1:CAS:528:DyaK1cXntFOmt7s%3D Occurrence Handle9802988

    Article  CAS  PubMed  Google Scholar 

  9. VD De Laurenzi MV Catani A Terrinoni M Corazzari G Melino A Costanzo et al. (1999) ArticleTitleAdditional complexity in p73: Induction by mitogens in lymphoid cells and identification of two new splicing variants epsilon and zeta. Cell Death Differ 6 389–390 Occurrence Handle10381648

    PubMed  Google Scholar 

  10. AM D’Erchia A Tullo G Pesole C Saccone E Sbisà (2003) ArticleTitlep53 gene family: Structural, functional and evolutionary features. Current Genomics 4 13–26 Occurrence Handle1:CAS:528:DC%2BD3sXhvVGmuw%3D%3D

    CAS  Google Scholar 

  11. WM Fitch (2000) ArticleTitleHomology a personal view on some of the problems. Trends Genet 16 227–231 Occurrence Handle10.1016/S0168-9525(00)02005-9 Occurrence Handle1:CAS:528:DC%2BD3cXislegsL8%3D Occurrence Handle10782117

    Article  CAS  PubMed  Google Scholar 

  12. N Galtier M Gouy C Gautier (1996) ArticleTitleSEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12 543–548 Occurrence Handle1:CAS:528:DyaK2sXhtlWktLw%3D Occurrence Handle9021275

    CAS  PubMed  Google Scholar 

  13. JP Gogarten L Olendzenski (1999) ArticleTitleOrthologs, paralogs and genome comparisons. Curr Opin Genet Dev 9 630–636 Occurrence Handle10.1016/S0959-437X(99)00029-5 Occurrence Handle1:CAS:528:DC%2BD3cXhslOjug%3D%3D Occurrence Handle10607614

    Article  CAS  PubMed  Google Scholar 

  14. TJ Grob U Novak C Maisse D Barcaroli AU Luthi F Pirnia et al. (2001) ArticleTitleHuman DeltaNp73 regulates dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8 1213–1223 Occurrence Handle10.1038/sj.cdd.4400962 Occurrence Handle1:CAS:528:DC%2BD38XmtVKksg%3D%3D Occurrence Handle11753569

    Article  CAS  PubMed  Google Scholar 

  15. MH Harris CB Thompson (2000) ArticleTitleThe role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7 1182–1191 Occurrence Handle1:CAS:528:DC%2BD3MXmsFOnsw%3D%3D Occurrence Handle11175255

    CAS  PubMed  Google Scholar 

  16. M Kaghad H Bonnet A Yang L Creancier JC Biscan A Valent (1997) ArticleTitleMonoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90 809–819 Occurrence Handle9288759

    PubMed  Google Scholar 

  17. DP Lane (1992) ArticleTitleCancer. p53, guardian of the genome. Nature 358 15–16 Occurrence Handle1:STN:280:By2A3M%2FlsFI%3D Occurrence Handle1614522

    CAS  PubMed  Google Scholar 

  18. MS Lee (1999) ArticleTitleMolecular clock calibrations and metazoan divergence dates. J Mol Evol 49 385–391 Occurrence Handle1:CAS:528:DyaK1MXmtlGksbo%3D Occurrence Handle10473780

    CAS  PubMed  Google Scholar 

  19. CA Mannella (1997) ArticleTitleMinireview: On structure and gating mechanism of the mitochondrial channel, VDAC. J Bioenerg Biomembr 29 525–531 Occurrence Handle1:CAS:528:DyaK1cXitlCjsb8%3D Occurrence Handle9559853

    CAS  PubMed  Google Scholar 

  20. M Oliva V De Pinto P Barsanti C Caggese (2002) ArticleTitleA genetic analysis of the porin gene encoding a voltage-dependent anion channel protein in Drosophila melanogaster. Mol Genet Genomics 267 746–756 Occurrence Handle10.1007/s00438-002-0714-1 Occurrence Handle1:CAS:528:DC%2BD38Xnsl2kurk%3D Occurrence Handle12207222

    Article  CAS  PubMed  Google Scholar 

  21. CD Pozniak S Radinovic A Yang F McKeon DR Kaplan FD Miller (2000) ArticleTitleAn anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science 289 304–306 Occurrence Handle10894779

    PubMed  Google Scholar 

  22. C Saccone PO Barome AM D’Erchia I D’Errico G Pesole E Sbisà A Tullo (2002) ArticleTitleMolecular strategies in metazoan genomic evolution. Gene 300 195–201 Occurrence Handle10.1016/S0378-1119(02)01036-3 Occurrence Handle1:CAS:528:DC%2BD38XptFaksbk%3D Occurrence Handle12468101

    Article  CAS  PubMed  Google Scholar 

  23. C Saccone C Lanave G Pesole G Preparata (1990) ArticleTitleInfluence of base composition on quantitative estimates of gene evolution. Methods Enzymol 183 570–583 Occurrence Handle1:CAS:528:DyaK3cXkslanu7s%3D Occurrence Handle2156131

    CAS  PubMed  Google Scholar 

  24. M Sardiello G Tripoli M Oliva F Santolamazza R Moschetti P Barsanti et al. (2003) ArticleTitleA comparative study of the porin genes encoding VDAC, a voltage-dependent anion channel protein, in Anopheles gambiae and Drosophila melanogaster. Gene . .

    Google Scholar 

  25. J Schultz CP Ponting K Hofmann P Bork (1997) ArticleTitleSAM as a protein interaction domain involved in developmental regulation. Protein Sci 6 249–253 Occurrence Handle1:CAS:528:DyaK2sXlvVSksQ%3D%3D Occurrence Handle9007998

    CAS  PubMed  Google Scholar 

  26. GE Schulz (2000) ArticleTitlebeta-Barrel membrane proteins. Curr Opin Struct Biol 10 443–447 Occurrence Handle1:CAS:528:DC%2BD3cXlvFOmt70%3D Occurrence Handle10981633

    CAS  PubMed  Google Scholar 

  27. D Swofford (1998) PAUP*: Phylogetic analysis using parsimony (* and other methods). Sinauer Associates Sunderland, MA

    Google Scholar 

  28. N Takezaki A Rzhetsky M Nei (1995) ArticleTitlePhylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12 823–833 Occurrence Handle1:CAS:528:DyaK2MXns1yqsbg%3D Occurrence Handle7476128

    CAS  PubMed  Google Scholar 

  29. Y Tsujimoto S Shimizu (2000) ArticleTitleVDAC regulation by the Bcl-2 family of proteins. Cell Death Differ 7 1174–1181 Occurrence Handle1:CAS:528:DC%2BD3MXmsFOnsg%3D%3D Occurrence Handle11175254

    CAS  PubMed  Google Scholar 

  30. DD Womble (2000) ArticleTitleGCG: The Wisconsin package of sequence analysis programs. Methods Mol Biol 132 3–22 Occurrence Handle1:CAS:528:DyaK1MXmslKqs7g%3D Occurrence Handle10547828

    CAS  PubMed  Google Scholar 

  31. A Yang M Kaghad Y Wang E Gillett MD Fleming V Dotsch et al. (1998) ArticleTitlep63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2 305–316 Occurrence Handle1:CAS:528:DyaK1cXmsVyqt7c%3D Occurrence Handle9774969

    CAS  PubMed  Google Scholar 

  32. A Yang N Walker R Bronson M Kaghad M Oosterwegel J Bonnin et al. (2000) ArticleTitlep73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404 99–103 Occurrence Handle10716451

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Saccone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saccone, C., Caggese, C., D’Erchia, A. et al. Molecular Clock and Gene Function . J Mol Evol 57 (Suppl 1), S277–S285 (2003). https://doi.org/10.1007/s00239-003-0037-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-0037-9

Keywords

Navigation