Skip to main content
Log in

Exact distributed quantum algorithm for generalized Simon’s problem

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

Simon’s problem is one of the most important problems demonstrating the power of quantum algorithms, as it greatly inspired the proposal of Shor’s algorithm. The generalized Simon’s problem is a natural extension of Simon’s problem and also a special hidden subgroup problem: Given a function \(f:\{0,1\}^n \rightarrow \{0,1\}^m\), it is promised that there exists a hidden subgroup \(S\le \mathbb {Z}_2^n\) of rank k such that for any \(x, y\in {\{0, 1\}}^n\), \(f(x) = f(y)\) iff \(x \oplus y \in S\). The goal of generalized Simon’s problem is to find the hidden subgroup S. In this paper, we present two key contributions. Firstly, we characterize the structure of the generalized Simon’s problem in distributed scenario and introduce a corresponding distributed quantum algorithm. Secondly, we refine the algorithm to ensure exactness due to the application of quantum amplitude amplification technique. Our algorithm offers exponential speedup compared to the distributed classical algorithm. When contrasted with the quantum algorithm for the generalized Simon’s problem, our algorithm’s oracle requires fewer qubits, thus making it easier to be physically implemented. Particularly, the exact distributed quantum algorithm we develop for the generalized Simon’s problem outperforms the best previously proposed distributed quantum algorithm for Simon’s problem in terms of generalizability and exactness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Fig. 1
Fig. 2
Algorithm 4
Fig. 3
Algorithm 5

Similar content being viewed by others

References

  1. Ambainis, A.: Superlinear advantage for exact quantum algorithms. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, STOC’13, pp. 891–900. ACM, New York, USA (2013). https://doi.org/10.1145/2488608.2488721

  2. Avron, J., Casper, O., Rozen, I.: Quantum advantage and noise reduction in distributed quantum computing. Phys. Rev. A 104, 052404 (2021). https://doi.org/10.1103/PhysRevA.104.052404

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995). https://doi.org/10.1103/PhysRevA.52.3457

    Article  ADS  PubMed  CAS  Google Scholar 

  4. Beals, R., Brierley, S., Gray, O., Harrow, A., Kutin, S., Linden, N., Shepherd, D., Stather, M.: Efficient distributed quantum computing. Proc. Math. Phys. Eng. Sci. 469, 2153 (2013). https://doi.org/10.1098/rspa.2012.0686

    Article  MathSciNet  Google Scholar 

  5. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. AMS Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  Google Scholar 

  6. Broadbent, A., Tapp, A.: Can quantum mechanics help distributed computing? SIGACT News 39(3), 67–76 (2008). https://doi.org/10.1145/1412700.1412717

    Article  Google Scholar 

  7. Buhrman, H., Röhrig, H.: Distributed quantum computing. In: Rovan, B., Vojtáš, P. (eds.) Mathematical Foundations of Computer Science, pp. 1–20. Springer, Berlin (2003). https://doi.org/10.1007/978-3-540-45138-9_1

    Chapter  Google Scholar 

  8. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a survey. Theor. Comput. Sci. 288(1), 21–43 (2002). https://doi.org/10.1016/S0304-3975(01)00144-X

    Article  MathSciNet  Google Scholar 

  9. Buhrman, H., Dam, W., Høyer, P., Tapp, A.: Multiparty quantum communication complexity. Phys. Rev. A 60, 2737–2741 (1999). https://doi.org/10.1103/PhysRevA.60.2737

    Article  ADS  CAS  Google Scholar 

  10. Cai, G., Qiu, D.: Optimal separation in exact query complexities for Simon’s problem. J. Comput. Syst. Sci. 97, 83–93 (2018). https://doi.org/10.1016/j.jcss.2018.05.001

    Article  MathSciNet  Google Scholar 

  11. Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum internet: From communication to distributed computing! In: Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, pp. 1–4. ACM, New York, USA (2018). https://doi.org/10.1145/3233188.3233224

  12. Chia, N.-H., Chung, K.-M., Lai, C.-Y.: On the need for large quantum depth. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 902–915. ACM, New York, USA (2020). https://doi.org/10.1145/3357713.3384291

  13. de Wolf, R.: Quantum communication and complexity. Theor. Comput. Sci. 287(1), 337–353 (2002). https://doi.org/10.1016/S0304-3975(02)00377-8

    Article  MathSciNet  Google Scholar 

  14. Denchev, V.S., Pandurangan, G.: Distributed quantum computing: A new frontier in distributed systems or science fiction? SIGACT News 39(3), 77–95 (2008). https://doi.org/10.1145/1412700.1412718

    Article  Google Scholar 

  15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC’96, pp. 212–219. ACM, New York, USA (1996). https://doi.org/10.1145/237814.237866

  16. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009). https://doi.org/10.1103/PhysRevLett.103.150502

    Article  ADS  MathSciNet  PubMed  CAS  Google Scholar 

  17. Hasegawa, A., Le Gall, F.: An optimal oracle separation of classical and quantum hybrid schemes. In: Proceedings of 33rd International Symposium on Algorithms and Computation, pp. 1–14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ISAAC.2022.6

  18. Izumi, T., Le Gall, F.: Quantum distributed algorithm for the all-pairs shortest path problem in the CONGEST-CLIQUE model. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. PODC’19, pp. 84–93. ACM, New York, USA (2019). https://doi.org/10.1145/3293611.3331628

  19. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology—CRYPTO 2016, pp. 207–237. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-53008-5_8

  20. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  21. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1996). https://doi.org/10.1017/CBO9780511574948

    Book  Google Scholar 

  22. Le Gall, F., Magniez, F.: Sublinear-time quantum computation of the diameter in CONGEST networks. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing. PODC’18, pp. 337–346. ACM, New York, USA (2018). https://doi.org/10.1145/3212734.3212744

  23. Le Gall, F., Nishimura, H., Rosmanis, A.: Quantum advantage for the LOCAL model in distributed computing. In: Niedermeier, R., Paul, C. (eds.) 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 126, pp. 49:1–49:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.STACS.2019.49

  24. Li, H., Qiu, D., Luo, L.: Distributed exact quantum algorithms for Deutsch–Jozsa problem (2023). arXiv:2303.10663

  25. Li, K., Qiu, D., Li, L., Zheng, S., Rong, Z.: Application of distributed semi-quantum computing model in phase estimation. Inf. Process. Lett. 120, 23–29 (2017). https://doi.org/10.1016/j.ipl.2016.12.002

    Article  MathSciNet  Google Scholar 

  26. Ngoenriang, N., Xu, M., Supittayapornpong, S., Niyato, D., Yu, H., Shen, X.: Optimal Stochastic Resource Allocation for Distributed Quantum Computing. (2022). arXiv:2210.02886

  27. Ngoenriang, N., Xu, M., Kang, J., Niyato, D., Yu, H., Shen, X.: DQC\(^{2}\)O: distributed quantum computing for collaborative optimization in future networks. IEEE Commun. Mag. 61(5), 188–194 (2023). https://doi.org/10.1109/MCOM.003.2200573

    Article  Google Scholar 

  28. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  29. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  30. Qiu, D., Luo, L., Xiao, L.: Distributed Grover’s algorithm. Theor. Comput. Sci. 993, 114461 (2024). https://doi.org/10.1016/j.tcs.2024.114461

  31. Qiu, D., Zheng, S.: Generalized Deutsch–Jozsa problem and the optimal quantum algorithm. Phys. Rev. A 97, 062331 (2018). https://doi.org/10.1103/PhysRevA.97.062331

    Article  ADS  CAS  Google Scholar 

  32. Qiu, D., Zheng, S.: Revisiting Deutsch–Jozsa algorithm. Inf. Comput. 275, 104605 (2020). https://doi.org/10.1016/j.ic.2020.104605

    Article  MathSciNet  Google Scholar 

  33. Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryptographic primitives. Quantum Inf. Comput. 17(1–2), 65–78 (2017). https://doi.org/10.26421/QIC17.1-2-4

    Article  MathSciNet  Google Scholar 

  34. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172

    Article  MathSciNet  Google Scholar 

  35. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997). https://doi.org/10.1137/S0097539796298637

    Article  MathSciNet  Google Scholar 

  36. Tan, J., Xiao, L., Qiu, D., Luo, L., Mateus, P.: Distributed quantum algorithm for Simon’s problem. Phys. Rev. A 106, 032417 (2022). https://doi.org/10.1103/PhysRevA.106.032417

    Article  ADS  MathSciNet  CAS  Google Scholar 

  37. Wu, Z., Qiu, D., Tan, J., Li, H., Cai, G.: Quantum and classical query complexities for generalized Simon’s problem. Theor. Comput. Sci. 924, 171–186 (2022). https://doi.org/10.1016/j.tcs.2022.05.025

    Article  MathSciNet  Google Scholar 

  38. Xiao, L., Qiu, D., Luo, L., Mateus, P.: Distributed Quantum-classical Hybrid Shor’s Algorithm (2023). arXiv:2304.12100

  39. Xiao, L., Qiu, D., Luo, L., Mateus, P.: Distributed Shor’s algorithm. Quantum Inf. Comput. 23, 27–44 (2022). https://doi.org/10.26421/QIC23.1-2-3

    Article  MathSciNet  Google Scholar 

  40. Yao, A.C.-C.: Quantum circuit complexity. In: Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science. SFCS ’93, pp. 352–361. IEEE Computer Society, USA (1993). https://doi.org/10.1109/SFCS.1993.366852

  41. Yao, A.C.-C.: Some complexity questions related to distributive computing(preliminary report). In: Proceedings of the 11th Annual ACM Symposium on Theory of Computing. STOC’79, pp. 209–213. ACM, New York, USA (1979). https://doi.org/10.1145/800135.804414

  42. Ye, Z., Huang, Y., Li, L., Wang, Y.: Query complexity of generalized Simon’s problem. Inf. Comput. 281, 104790 (2021). https://doi.org/10.1016/j.ic.2021.104790

    Article  MathSciNet  Google Scholar 

  43. Yimsiriwattana, S.J.L., Jr.: Distributed quantum computing: a distributed Shor algorithm. In: Donkor, E., Pirich, A.R., Brandt, H.E. (eds.) Quantum Information Science II, vol. 5436, pp. 360–372. Springer, New York (2004). https://doi.org/10.1117/12.546504

    Chapter  Google Scholar 

  44. Zhou, B.-M., Yuan, Z.: Breaking symmetric cryptosystems using the offline distributed Grover-meets-Simon algorithm. Quantum Inf. Process. 22, 333 (2023). https://doi.org/10.1007/s11128-023-04089-9

    Article  ADS  MathSciNet  Google Scholar 

  45. Zhou, X., Qiu, D., Luo, L.: Distributed exact Grover’s algorithm. Front. Phys. 18, 51305 (2023). https://doi.org/10.1007/s11467-023-1327-x

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for important comments and suggestions that help us improve the quality of the paper. This work is supported in part by the National Natural Science Foundation of China (Nos. 61876195, 61572532), the Natural Science Foundation of Guangdong Province of China (No. 2017B030311011), and the Shenzhen Science and Technology Program (Grant No. JCYJ20220818102003006).

Funding

Fundação para a Ciência e Tecnologia, Instituto de Telecomunicações Research Unit, ref. UIDB/50008/2020, UIDP/50008/2020.

Author information

Authors and Affiliations

Authors

Contributions

HL designs the exact distributed algorithm for generalized Simon’s problem; DQ proposes the problem and gives the ideas and methods for designing algorithm, as well as check the details; LL checks the manuscript and gives improvement; PM further revises the manuscript with improvement.

Corresponding author

Correspondence to Daowen Qiu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Lemma 3

Proof of Lemma 3

Lemma 3

Let \(\phi =2\arctan {\left( \sqrt{\frac{2^{n-t-r-k_l}}{3\cdot 2^{n-t-r-k_l}-4}}\right) }\), \(\varphi = \arccos {\left( \frac{2^{n-t-r-k_l-1}-1}{2^{n-t-r-k_l}-1}\right) }\), where \(r=|Y|-1\). Then

$$\begin{aligned} \mathcal {Q}\Big \vert S_l^{\perp },0^{2^tm},S(T)\Big \rangle =\Big \vert \Psi _{X}\Big \rangle . \end{aligned}$$

In line 6 of Algorithm 3, the measurement result z is obtained and satisfies \(z\in S_l^{\perp }{\setminus } \langle Y \rangle \) conditions with certainty.

Proof

From Eq. (39), we can write \(\mathcal {R}_{0}(\phi )\) as follows.

$$\begin{aligned} \mathcal {R}_{0}(\phi ) =&I^{\otimes n-t + 2^{t+1}m}- \left( 1 - e^{i\phi }\right) \Big \vert 0^{n-t}, 0^{2^{t+1}m}\Big \rangle \Big \langle 0^{n-t}, 0^{2^{t+1}m}\Big \vert . \end{aligned}$$
(A1)

From the definitions of \(\mathcal {R}_{\mathcal {A}}(\varphi , Y)\), \(\Big \vert \Psi _{X}\Big \rangle \) and \(\Big \vert \Psi _{Y}\Big \rangle \), we have

$$\begin{aligned}&\left( \mathcal {R}_{\mathcal {A}}(\varphi , Y)\otimes I^{\otimes {2^{t+1}}m}\right) \Big \vert \Psi _{X}\Big \rangle&= e^{i\varphi }\Big \vert \Psi _{X}\Big \rangle . \end{aligned}$$
(A2)
$$\begin{aligned}&\left( \mathcal {R}_{\mathcal {A}}(\varphi , Y)\otimes I^{\otimes {2^{t+1}}m}\right) \Big \vert \Psi _{Y}\Big \rangle&= \Big \vert \Psi _{Y}\Big \rangle . \end{aligned}$$
(A3)

Let \(\mathcal {U}(\mathcal {A}, \phi ) = -\mathcal {A}\mathcal {R}_{0}(\phi )\mathcal {A}^{\dagger }\), then based on Eq. (41), \(\mathcal {Q}\) can be written as

$$\begin{aligned} \mathcal {Q} = \mathcal {U}(\mathcal {A}, \phi )\left( \mathcal {R}_{\mathcal {A}}(\varphi , Y)\otimes I^{\otimes {2^{t+1}}m}\right) . \end{aligned}$$
(A4)

For \(\mathcal {U}(\mathcal {A}, \phi )\), we have

$$\begin{aligned} \mathcal {U}(\mathcal {A}, \phi )= & {} -\mathcal {A}\mathcal {R}_{0}(\phi )\mathcal {A}^{\dagger }\nonumber \\= & {} -\mathcal {A}\left( I^{\otimes n-t + 2^{t+1}m}\right. - \left. \left( 1 - e^{i\phi }\right) \Big \vert 0^{n-t}, 0^{2^{t+1}m}\Big \rangle \Big \langle 0^{n-t}, 0^{2^{t+1}m}\Big \vert \right) \mathcal {A}^{\dagger }\nonumber \\= & {} \left( 1 - e^{i\phi }\right) \left( \mathcal {A}\Big \vert 0^{n-t}, 0^{2^{t+1}m}\Big \rangle \Big \langle 0^{n-t}, 0^{2^{t+1}m}\Big \vert \mathcal {A}^{\dagger }\right) - I^{\otimes n-t + 2^{t+1}m}\nonumber \\= & {} \left( 1 - e^{i\phi }\right) \Big \vert K^{\perp }, 0^{2^tm}, S(T)\Big \rangle \Big \langle K^{\perp }, 0^{2^tm}, S(T)\Big \vert - I^{\otimes n-t + 2^{t+1}m}\nonumber \\= & {} \left( 1 - e^{i\phi }\right) \big (\Big \vert \Psi _{X}\Big \rangle +\Big \vert \Psi _{Y}\Big \rangle \big )\big (\Big \langle \Psi _{X}\Big \vert +\Big \langle \Psi _{Y}\Big \vert \big ) - I^{\otimes n-t + 2^{t+1}m}. \end{aligned}$$
(A5)

Since \(| \langle Y \rangle | = 2 ^ {r} \)and \(| S_l ^ {\perp } | = 2 ^ {n-t - k_l} \), according to the definitions of \(\Big \vert \Psi _ {X}\Big \rangle \) and \(\Big \vert \Psi _ {Y}\Big \rangle \), we have

$$\begin{aligned} \langle \Psi _{X}|\Psi _{X}\rangle= & {} 1-2^{r+k_l+t-n}.\nonumber \\ \langle \Psi _{Y}|\Psi _{Y}\rangle= & {} 2^{r+k_l+t-n}.\nonumber \\ \langle \Psi _{X}|\Psi _{Y}\rangle= & {} 0. \end{aligned}$$
(A6)

Thus, we can obtain the following equations.

$$\begin{aligned} \mathcal {Q}\Big \vert \Psi _{X}\Big \rangle= & {} \mathcal {U}(\mathcal {A}, \phi )\left( \mathcal {R}_{\mathcal {A}}(\varphi , Y)\otimes I^{\otimes 2^{t+1}m}\right) \Big \vert \Psi _{X}\Big \rangle \nonumber \\= & {} e^{i\varphi }\mathcal {U}(\mathcal {A}, \phi )\Big \vert \Psi _{X}\Big \rangle \nonumber \\= & {} e^{i\varphi }\Big (\left( 1 - e^{i\phi }\right) \big (\Big \vert \Psi _{X}\Big \rangle +\Big \vert \Psi _{Y}\Big \rangle \big )\big (\Big \langle \Psi _{X}\Big \vert +\Big \langle \Psi _{Y}\Big \vert \big ) - I^{\otimes n-t + 2^{t+1}m}\Big )\Big \vert \Psi _{X}\Big \rangle \nonumber \\= & {} e^{i\varphi }\left( 1 - e^{i\phi }\right) \big (\Big \vert \Psi _{X}\Big \rangle +\Big \vert \Psi _{Y}\Big \rangle \big )\big (\Big \langle \Psi _{X}\Big \vert +\Big \langle \Psi _{Y}\Big \vert \big ) \Big \vert \Psi _{X}\Big \rangle - e^{i\varphi }\Big \vert \Psi _{X}\Big \rangle \nonumber \\= & {} e^{i\varphi }\left( 1 - e^{i\phi }\right) \langle \Psi _{X}|\Psi _{X}\rangle \big (\Big \vert \Psi _{X}\Big \rangle +\Big \vert \Psi _{Y}\Big \rangle \big ) - e^{i\varphi }\Big \vert \Psi _{X}\Big \rangle \nonumber \\= & {} e^{i\varphi }\left( 1 - e^{i\phi }\right) \left( 1-2^{r+k_l+t-n}\right) \big (\Big \vert \Psi _{X}\Big \rangle +\Big \vert \Psi _{Y}\Big \rangle \big ) - e^{i\varphi }\Big \vert \Psi _{X}\Big \rangle \nonumber \\= & {} e^{i\varphi }\left( (1-e^{i\phi })(1-2^{r+k_l+t-n})-1\right) \Big \vert \Psi _{X}\Big \rangle + e^{i\varphi }(1-e^{i\phi })(1-2^{r+k_l+t-n})\Big \vert \Psi _{Y}\Big \rangle .\nonumber \\ \end{aligned}$$
(A7)
$$\begin{aligned} \mathcal {Q}\Big \vert \Psi _{Y}\Big \rangle= & {} \mathcal {U}(\mathcal {A}, \phi )\left( \mathcal {R}_{\mathcal {A}}(\varphi , Y)\otimes I^{\otimes 2^{t+1}m}\right) \Big \vert \Psi _{Y}\Big \rangle \nonumber \\= & {} \mathcal {U}(\mathcal {A}, \phi )\Big \vert \Psi _{Y}\Big \rangle \nonumber \\= & {} \Big (\left( 1 - e^{i\phi }\right) \big (\Big \vert \Psi _{X}\Big \rangle +\Big \vert \Psi _{Y}\Big \rangle \big )\big (\Big \langle \Psi _{X}\Big \vert +\Big \langle \Psi _{Y}\Big \vert \big ) - I^{\otimes n-t + 2^{t+1}m}\Big )\Big \vert \Psi _{Y}\Big \rangle \nonumber \\= & {} \left( 1 - e^{i\phi }\right) \big (\Big \vert \Psi _{X}\Big \rangle +\Big \vert \Psi _{Y}\Big \rangle \big )\big (\Big \langle \Psi _{X}\Big \vert +\Big \langle \Psi _{Y}\Big \vert \big )\Big \vert \Psi _{Y}\Big \rangle - \Big \vert \Psi _{Y}\Big \rangle \nonumber \\= & {} \left( 1 - e^{i\phi }\right) \langle \Psi _{Y}|\Psi _{Y}\rangle \big (\Big \vert \Psi _{X}\Big \rangle +\Big \vert \Psi _{Y}\Big \rangle \big ) - \Big \vert \Psi _{Y}\Big \rangle \nonumber \\= & {} \left( 1 - e^{i\phi }\right) 2^{r+k_l+t-n}\big (\Big \vert \Psi _{X}\Big \rangle +\Big \vert \Psi _{Y}\Big \rangle \big ) - \Big \vert \Psi _{Y}\Big \rangle \nonumber \\= & {} (1-e^{i\phi })2^{r+k_l+t-n}\Big \vert \Psi _{X}\Big \rangle -\left( (1-e^{i\phi })(1-2^{r+k_l+t-n})+e^{i\phi } \right) \Big \vert \Psi _{Y}\Big \rangle . \end{aligned}$$
(A8)

By making sure the resulting superposition \(\mathcal {Q}(\Big \vert \Psi _{X}\Big \rangle +\Big \vert \Psi _{Y}\Big \rangle )\) has inner product zero with \(\Big \vert \Psi _{Y}\Big \rangle \), then based on Eqs. (A7) and (A8), we can obtain the following equation.

$$\begin{aligned} e^{i\varphi }(1-e^{i\phi })(1-2^{r+k_l+t-n}) =(1-e^{i\phi })(1-2^{r+k_l+t-n})+e^{i\phi }. \end{aligned}$$
(A9)

Denote by

$$\begin{aligned} b=1-2^{r+k_l+t-n}. \end{aligned}$$
(A10)

Then according to Eq. (A9), we have

$$\begin{aligned} b= & {} e^{-i\varphi }\left( b + \frac{1}{e^{-i\phi } - 1}\right) \nonumber \\= & {} e^{-i\varphi }\left( b + \frac{1}{\cos \phi - 1 - i\sin \phi }\right) \nonumber \\= & {} e^{-i\varphi }\left( b + \frac{\cos \phi - 1}{\left( \cos \phi - 1\right) ^2 + \sin ^2\phi }\right. \left. + i\frac{\sin \phi }{\left( \cos \phi - 1\right) ^2 + \sin ^2\phi }\right) \nonumber \\= & {} e^{-i\varphi }\left( b - \frac{1}{2} + i\frac{\sin \phi }{2 - 2\cos \phi }\right) . \end{aligned}$$
(A11)

Taking the square of b, we can further have

$$\begin{aligned} b^2 = \left( b - \frac{1}{2}\right) ^2 + \frac{\sin ^2\phi }{4\left( 1 - \cos \phi \right) ^2}. \end{aligned}$$
(A12)

Arrange Eq. (A12) to get

$$\begin{aligned} 4b - 1= & {} \frac{\sin ^2\phi }{\left( 1 - \cos \phi \right) ^2}\nonumber \\= & {} \cot ^2\frac{\phi }{2}. \end{aligned}$$
(A13)

From Eq. (A13), we can obtain

$$\begin{aligned} \phi= & {} 2\arctan {\left( \sqrt{\frac{1}{4b-1}}\right) }\nonumber \\= & {} 2\arctan {\left( \sqrt{\frac{2^{n-t-r-k_l}}{3\cdot 2^{n-t-r-k_l}-4}}\right) }. \end{aligned}$$
(A14)

Since b is a real number, Eq. (A11) also needs to be a real number, and we can further obtain

$$\begin{aligned} \varphi= & {} \arccos {\left( \frac{b-\frac{1}{2}}{b}\right) }\nonumber \\= & {} \arccos {\left( \frac{2^{n-t-r-k_l-1}-1}{2^{n-t-r-k_l}-1}\right) }. \end{aligned}$$
(A15)

Thus, from the above derivation, it follows that if \(\phi =2\arctan {\left( \sqrt{\frac{2^{n-t-r-k_l}}{3\cdot 2^{n-t-r-k_l}-4}}\right) }\), \(\varphi = \arccos {\left( \frac{2^{n-t-r-k_l-1}-1}{2^{n-t-r-k_l}-1}\right) }\), where \(r=|Y|-1\), we have \(\mathcal {Q}\Big \vert S_l^{\perp },0^{2^tm},S(T)\Big \rangle =\Big \vert \Psi _{X}\Big \rangle \), and \(z\in X={S_l^{\perp }}{\setminus } \langle Y \rangle \) is obtained in line 6 of Algorithm 3, after measuring the first register of the quantum state \(Q\Big \vert S_l^{\perp },0^{2^tm}, S(T)\Big \rangle \). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Qiu, D., Luo, L. et al. Exact distributed quantum algorithm for generalized Simon’s problem. Acta Informatica (2024). https://doi.org/10.1007/s00236-024-00455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00236-024-00455-x

Navigation