Skip to main content
Log in

Lamplighter groups and automata

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

This paper investigates presentations of lamplighter groups using computational models from automata theory. The present work shows that if G can be presented such that the full group operation is recognised by a transducer, then the same is true for the lamplighter group \(G \wr {{\mathbb {Z}}}\) of G. Furthermore, Cayley presentations, where only multiplications with constants are recognised by transducers, are used to study generalised lamplighter groups of the form \(G \wr {{\mathbb {Z}}}^d\) and \(G \wr F_d\), where \(F_d\) is the free group over d generators. Additionally, \({{\mathbb {Z}}}_k \wr {{\mathbb {Z}}}^2\) and \({{\mathbb {Z}}}_k \wr {F_d}\) are shown to be Cayley tree automatic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amchislavska, M.: The geometry of generalized lamplighter groups. PhD Thesis, Cornell University (2014)

  2. Aubrun, N., Kari, J.: On the domino problem of Baumslag–Solitar groups. Theoret. Comput. Sci. 894, 12–22 (2021)

    Article  MathSciNet  Google Scholar 

  3. Bartholdi, L., Šunik, Z.: Some solvable automaton groups. Contemp. Math. 394, 11–30 (2006)

    Article  MathSciNet  Google Scholar 

  4. Baumslag, G.: Wreath products and finitely presented groups. Math. Z. 75, 22–28 (1961)

    Article  MathSciNet  Google Scholar 

  5. Baumslag, G., Shapiro, M., Short, H.: Parallel poly-pushdown groups. J. Pure Appl. Algebra 140(3), 209–227 (1999)

    Article  MathSciNet  Google Scholar 

  6. Berdinsky, D.: Representations of transitive graphs by automata. PhD Thesis, University of Auckland (2017)

  7. Berdinsky, D., Elder, M., Taback, J.: Being Cayley automatic is closed under taking wreath product with virtually cyclic groups. Bull. Aust. Math. Soc. 104(3), 464–474 (2021). https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/abs/being-cayley-automatic-is-closed-under-taking-wreath-product-with-virtually-cyclic-groups/DC30F4447DA3DCE0EAADE125B92845D6

  8. Berdinsky, D., Khoussainov, B.: Cayley automatic representations of wreath products. Int. J. Found. Comput. Sci. 27(2), 147–159 (2016)

    Article  MathSciNet  Google Scholar 

  9. Berdinsky, D., Kruengthomaya, P.: Nonstandard Cayley automatic representations for fundamental groups of torus bundles over the circle. In: Language and Automata Theory and Applications—Fourteenth International Conference, LATA 2020, Milan, Italy, Proceedings. Springer LNCS 12038, pp. 115–127 (2020)

  10. Berstel, J.: Transductions and Context-Free Languages. Teubner (1979). http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html

  11. Bérubé, S., Palnitkar, T., Taback, J.: Higher rank lamplighter groups are graph automatic. J. Algebra 496, 315–343 (2018)

    Article  MathSciNet  Google Scholar 

  12. Bridson, M.R., Gilman, R.H.: Formal language theory and the geometry of \(3\)-manifolds. Comentarii Mathematici Helvetici 71(1), 525–555 (1996)

    Article  MathSciNet  Google Scholar 

  13. Brittenham, M., Hermiller, S., Holt, D.: Algorithms and topology of Cayley graphs for groups. J. Algebra 415, 112–136 (2014)

    Article  MathSciNet  Google Scholar 

  14. Blumensath, A.: Automatic structures. Diploma thesis, Department of Computer Science, RWTH Aachen (1999)

  15. Blumensath, A., Grädel, E.: Automatic structures. In: Fifteenth Annual IEEE Symposium on Logic in Computer Science, LICS 2000, pp. 51–62 (2000)

  16. Blumensath, A., Grädel, E.: Finite presentations of infinite structures: automata and interpretations. Theory Comput. Syst. 37, 641–674 (2004)

    Article  MathSciNet  Google Scholar 

  17. Borchert, B., Lange, K.-J., Stephan, F., Tesson, P., Therien, D.: The dot-depth and the polynomial hierarchy correspond on the delta levels. Int. J. Found. Comput. Sci. 16, 625–644 (2005)

    Article  Google Scholar 

  18. Cadilhac, M., Chistikov, D., Zetzsche, G.: Rational subsets of Baumslag–Solitar groups. In: International Colloquium on Automata, Languages and Programming—ICALP 2020, LIPIcs Proceedings 168, pp. 116:1–116:16 (2020)

  19. Case, J., Jain, S., Seah, S., Stephan, F.: Automatic functions, linear time and learning. Log. Methods Comput. Sci. 9(3), 1–26 (2013)

    Article  MathSciNet  Google Scholar 

  20. Elder, M., Elston, G., Ostheimer, G.: On groups that have normal forms computable in logspace. J. Algebra 381, 260–281 (2013)

    Article  MathSciNet  Google Scholar 

  21. Elder, M., Taback, J.: C-graph automatic groups. J. Algebra 413, 289–319 (2014)

    Article  MathSciNet  Google Scholar 

  22. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM J. Res. Dev. 9(1), 47–68 (1965)

    Article  MathSciNet  Google Scholar 

  23. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word Processing in Groups. Jones and Bartlett Publishers, Boston (1992)

    Book  Google Scholar 

  24. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Cambridge (1974)

    MATH  Google Scholar 

  25. Farb, B.: Automatic groups: a guided tour. L’ Enseignement Mathématique 38, 291–313 (1992)

    MathSciNet  MATH  Google Scholar 

  26. Figelius, M., Ganardi, M., Lohrey, M., Zetzsche, G.: The complexity of Knapsack problems in wreath products. In: Fortyseventh International Colloquium on Automata, Languages, and Programming, ICALP 2020, Saarbrücken, Germany, LIPIcs Proceedings 168, pp. 126:1–126:18 (2020)

  27. Ganardi, M., König, D., Lohrey, M., Zetzsche, G.: Knapsack problems for wreath products. In: Thirtyfifth Symposium on Theoretical Aspects of Computer Science STACS 2018, Caen, France, LIPIcs Proceedings 96, pp. 32:1–32:13 (2018)

  28. Grädel, E.: Automatic structures: twenty years later. In: Proceedings of the Thirty-Fifth Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2020, ACM, pp. 21–34 (2020)

  29. Grigorchuk, R.I., Żuk, A.: The Lamplighter group as a group generated by a \(2\)-state automaton and its spectrum. Geom. Dedicata 87(1–3), 209–244 (2001)

    Article  MathSciNet  Google Scholar 

  30. Güler, D., Krebs, A., Lange, K., Wolf, P.: Deciding regular intersection emptiness of complete problems for PSPACE and the polynomial hierarchy. In: Languages and Automata Theory and Applications—Twelfth International Conference, LATA 2018, Ramat Gan, Israel, Proceedings. Springer LNCS 10792, pp. 156–168 (2018)

  31. Hodgson, B.R.: Théories décidables par automate fini. Ph.D. thesis, Département de mathématiques et de statistique, Université de Montréal (1976)

  32. Hodgson, B.R.: Décidabilité par automate fini. Annales des sciences mathématiques du Québec 7(1), 39–57 (1983)

    MathSciNet  MATH  Google Scholar 

  33. Jain, S., Khoussainov, B., Stephan, F.: Finitely generated semiautomatic groups. Computability 7(2–3), 273–287 (2018)

    Article  MathSciNet  Google Scholar 

  34. Jain, S., Khoussainov, B., Stephan, F., Teng, D., Zou, S.: Semiautomatic structures. Theory Comput. Syst. 61(4), 1254–1287 (2017)

    Article  MathSciNet  Google Scholar 

  35. Kharlampovich, O., Khoussainov, B., Miasnikov, A.: From automatic structures to automatic groups. Groups Geom. Dyn. 8(1), 157–198 (2014)

    Article  MathSciNet  Google Scholar 

  36. Kharlampovich, O., López, L., Myasnikov, A.: The Diophantine problem in some metaabelian groups. Math. Comput. 89, 2507–2519 (2020)

    Article  Google Scholar 

  37. Khoussainov, B., Minnes, M.: Three lectures on automatic structures. In: Proceedings of Logic Colloquium 2007. Lecture Notes in Logic, vol. 35, pp. 132–176 (2010)

  38. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Logical and Computational Complexity, (International Workshop LCC 1994). Springer LNCS 960, pp. 367–392 (1995)

  39. Krebs, A., Lange, K.-J., Reifferscheid, S.: Characterizing TC\(^0\) in terms of infinite groups. Theory Comput. Syst. 40(4), 303–325 (2007)

    Article  MathSciNet  Google Scholar 

  40. Lange, K.-J.: Kontextfrei Kontrollierte ET0L Systeme. University of Hamburg, Germany (1982)

    Google Scholar 

  41. Lange, K.-J.: Complexity and structure in formal language theory. Fund. Inform. 25(3), 327–352 (1996)

    MathSciNet  MATH  Google Scholar 

  42. Lange, K., McKenzie, P.: On the complexity of free monoid morphisms. In: Algorithms and Computation, Ninth International Symposium, ISAAC 1998, Taejon, Korea, Proceedings. Springer LNCS 1533, pp. 247–256 (1998)

  43. Lange, K.-J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60(2), 354–367 (2000)

    Article  MathSciNet  Google Scholar 

  44. Lange, K.-J., Rossmanith, P.: The emptiness problem for intersections of regular languages. In: Seventeenth International Symposium on Mathematical Foundations of Computer Science—MFCS 1992, Prague, Czechoslovakia, Proceedings. Springer LNCS 629, pp. 346–354 (1992)

  45. Lohrey, M., Steinberg, B., Zetzsche, G.: Rational subsets and submonoids of wreath products. Inf. Comput. 243, 191–204 (2015)

    Article  MathSciNet  Google Scholar 

  46. Mealy, G.H.: A method to synthesizing sequential circuits. Bell Syst. Tech. J. 34(5), 1045–1079 (1955)

    Article  MathSciNet  Google Scholar 

  47. Moldagaliyev, B.: A study of randomness and groups using finite automata. PhD Thesis, National University of Singapore (2018)

  48. Moore, E.F.: Gedanken experiments on sequential machines. In: Shannon, C.E., McCarthy, J. (eds.) Automata Stud. Princeton University Press, Princeton, New Jersey (1956)

    Google Scholar 

  49. Nies, A.: Describing groups. Bull. Symb. Log. 13(3), 305–339 (2007)

    Article  MathSciNet  Google Scholar 

  50. Nies, A., Thomas, R.: FA-presentable groups and rings. J. Algebra 320, 569–585 (2008)

    Article  MathSciNet  Google Scholar 

  51. Oliver, G.P., Thomas, R.M.: Finitely generated groups with automatic presentations. In: STACS 2005. Lecture Notes in Computer Science, 3404, Springer, Berlin, pp. 693-704 (2005)

  52. Pélecq, L.: Isomorphismes et automorphismes des graphes context-free, équationnels et automatiques. Doctoral Dissertation, University of Bordeaux, France (1997)

  53. Rubin, S.: Automata presenting structures: a survey of the finite string case. Bull. Symb. Log. 14, 169–209 (2008)

    Article  MathSciNet  Google Scholar 

  54. Sénizergues, G.: Definability in weak monadic second-order logic of some infinite graphs. In: Dagstuhl seminar on Automata theory: Infinite computations. Warden, Germany, vol. 28, p. 16 (1992)

  55. Stephan, F.: Automatic structures—recent results and open questions. Keynote Talk. In: Third International Conference on Science and Engineering in Mathematics, Chemistry and Physics, ScieTech 2015, pp. 121–130 in proceedings booklet). Journal of Physics: Conference Series, 622/1 (Paper 012013) (2015). http://iopscience.iop.org/1742-6596/622/1

  56. Tran, T.D.: Automata Theory and Groups. Final Year Project Report, National University of Singapore (2018)

Download references

Acknowledgements

Sanjay Jain and Frank Stephan have been supported in part by the Singapore Ministry of Education Academic Research Fund Tier 2 grants MOE2016-T2-1-019/R146-000-234-112 and MOE2019-T2-2-121/R146-000-304-112. In addition Sanjay Jain was also supported in part by NUS grant C252-000-087-001 and E252-00-0021-01. The paper was developed during the final year project of Tien Dat Tran [56] and Birzhan Moldagaliyev’s PhD thesis [47]. The authors would like to thank Dmitry Berdinsky and Bakhadyr Khoussainov for correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Stephan.

Additional information

This paper is dedicated to Klaus-Jörn Lange to honour his seventieth birthday; Klaus-Jörn Lange is a coauthor of Frank Stephan. Klaus-Jörn Lange’s work spans over four decades and centres at the notion of formal languages. He started off with investigating ET0L systems [40] and he made significant contributions to formal languages and computational complexity [30, 41, 43, 44]. Among these four, the work [43] stands out by showing that reversible space classes coincide with the corresponding deterministic space classes of the same bound. The connections between formal languages and computational complexity are also manifested in leaf languages [17] and this is where our ways crossed for the first time. His working area also touches group and semigroup theory [39, 42] which is the topic of the present work. Klaus-Jörn Lange has dedicated most of his life to science and we wish him health and strength to be further able to follow his passion in the golden years. Frank Stephan also still remembers the visits to Tübingen, in particular in the time when the common coauthor Bernd Borchert was working there with Klaus-Jörn Lange.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Moldagaliyev, B., Stephan, F. et al. Lamplighter groups and automata. Acta Informatica 59, 451–478 (2022). https://doi.org/10.1007/s00236-022-00423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-022-00423-3

Navigation