Skip to main content
Log in

A linear-time algorithm for the orbit problem over cyclic groups

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

The orbit problem is at the heart of symmetry reduction methods for model checking concurrent systems. It asks whether two given configurations in a concurrent system (represented as finite strings over some finite alphabet) are in the same orbit with respect to a given finite permutation group (represented by their generators) acting on this set of configurations by permuting indices. It is known that the problem is in general as hard as the graph isomorphism problem, whose precise complexity (whether it is solvable in polynomial-time) is a long-standing open problem. In this paper, we consider the restriction of the orbit problem when the permutation group is cyclic (i.e. generated by a single permutation), an important restriction of the problem. It is known that this subproblem is solvable in polynomial-time. Our main result is a linear-time algorithm for this subproblem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For, if it were NP-hard, then the coset intersection problem (for permutation groups) would be NP-hard, owing to its polynomial-time equivalence to the orbit problem [9]. By the well-known results of [2, 16] (also see [17, Sect. 6.5, Chapter 27]), which essentially shows that the coset intersection problem is in the complexity class \(\text {coAM}\) (contained in the second level of the polynomial hierarchy), this would mean that the polynomial hierarchy collapses to the second level.

  2. Some examples in [28] (even with a small number of processes) require a model checker to invoke an algorithm for the orbit problem hundreds to thousands of times for one transition system.

  3. This means that the bound does not depend on any number-theoretic assumptions.

References

  1. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: STOC, pp. 171–183 (1983)

  2. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988). doi:10.1016/0022-0000(88)90028-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Bach, E., Shallit, J.: Algorithmic Number Theory, Foundations of Computing, vol. 1. The MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  4. Benjamin, A.T., Preston, G.O., Quinn, J.J.: A stirling encounter with harmonic numbers. Math. Mag. 75, 95–103 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bostan, A., Gaudry, P., Schost, É.: Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM J. Comput. 36(6), 1777–1806 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brualdi, R.A.: Combinatorial Matrix Classes. Encyclopedia of Mathematics and Its Applications, vol. 108. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  7. Cameron, P.J.: Permutation Groups. London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  8. Clarke, E.M.: The birth of model checking. In: 25 Years of Model Checking (2008)

  9. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model checking. In: CAV, pp. 147–158 (1998)

  10. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal logic model checking. Formal Methods Syst. Des. 9(1/2), 77–104 (1996)

    Article  Google Scholar 

  11. Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel Publishing Company. http://books.google.com.sg/books?id=C0HPgWhEssYC (1974)

  12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  13. Costa, E., Harvey, D.: Faster deterministic integer factorization. CoRR abs/1201.2116 (2012)

  14. Donaldson, A.F., Miller, A.: On the constructive orbit problem. Ann. Math. Artif. Intell. 57(1), 1–35 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods Syst. Des. 9(1/2), 105–131 (1996)

    Article  Google Scholar 

  16. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). FOCS, 174–187 (1986). doi:10.1109/SFCS.1986.47

  17. Graham, R.L., Grötschel, M., Lovász, L. (eds.): Handbook of Combinatorics, vol. 2. MIT Press, Cambridge, MA (1995)

    MATH  Google Scholar 

  18. Hardy, G.H., Wright, E.M.: An Introduction to The Theory of Numbers, 6th edn. OUP Oxford, Oxford (2008)

    MATH  Google Scholar 

  19. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods Syst. Des. 9(1/2), 41–75 (1996)

    Google Scholar 

  20. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-stabilizing mutual exclusion. In: PoDC, pp. 119–131 (1990). doi:10.1145/93385.93409

  21. Kannan, R., Lipton, R.J.: Polynomial-time algorithm for the orbit problem. J. ACM 33(4), 808–821 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luks, E.M.: Permutation groups and polynomial-time computation. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 11, 139–175 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Norman, G.: Analysing randomized distributed algorithms. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 384–418. Springer, Berlin (2004)

  24. Primorial numbers (the on-line encyclopedia of integer sequences). http://oeis.org/A002110

  25. Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms, 2nd edn. Addison-Wesley Professional, Boston (2013)

    MATH  Google Scholar 

  26. Shoup, V.: A Computational Introduction to Number Theory and Algebra, 2nd edn. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  27. Wahl, T., Donaldson, A.F.: Replication and abstraction: symmetry in automated formal verification. Symmetry 2, 799–847 (2010)

    Article  MathSciNet  Google Scholar 

  28. Zhang, S.J., Sun, J., Sun, C., Liu, Y., Ma, J., Dong, J.S.: Constraint-based automatic symmetry detection. In: ASE, pp. 15–25 (2013)

Download references

Acknowledgments

We thank the anonymous referees of the conference version for their helpful feedback. Lin was supported by Yale-NUS Startup Grant; part of the work was done when Lin was at Oxford supported by EPSRC (H026878). Zhou was supported by ARC (FT110100629).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. Lin.

Appendix: Completing proof of Theorem 2

Appendix: Completing proof of Theorem 2

Let \(\begin{bmatrix}n \\ k\end{bmatrix}\) denote the unsigned Stirling number of the first kind, and \(\left( {\begin{array}{c}n\\ k\end{array}}\right) \) denote n choose k. The harmonic number \(H_n\) is defined as

$$\begin{aligned} H_n = \sum _{k=1}^n \frac{1}{k}. \end{aligned}$$

In general, for an integer \(s \ge 1\), the generalized harmonic number of order s is defined as

$$\begin{aligned} H_n^{(s)} = \sum _{k=1}^n \frac{1}{k^s}. \end{aligned}$$

It is known that

$$\begin{aligned} \frac{1}{n!} \sum _{k=1}^n k \begin{bmatrix}n \\ k\end{bmatrix} = H_n. \end{aligned}$$

Define

$$\begin{aligned} f(n) = \frac{1}{n!} \sum _{k=1}^n k^2 \begin{bmatrix}n \\ k\end{bmatrix}, \quad g(n) = \frac{1}{n!} \sum _{k=1}^n k^3 \begin{bmatrix}n \\ k\end{bmatrix}. \end{aligned}$$

It is known that

$$\begin{aligned} \sum _{k=m}^{n} \begin{bmatrix}n \\ k\end{bmatrix} \left( {\begin{array}{c}k\\ m\end{array}}\right) = \begin{bmatrix}n+1 \\ m+1\end{bmatrix}, \end{aligned}$$

(see [4]). In particular, we have

$$\begin{aligned} \begin{bmatrix}n+1 \\ 3\end{bmatrix}= & {} \sum _{k=2}^{n} \begin{bmatrix}n \\ k\end{bmatrix} \left( {\begin{array}{c}k\\ 2\end{array}}\right) = \sum _{k=1}^{n} \begin{bmatrix}n \\ k\end{bmatrix} \frac{k(k-1)}{2} = \frac{1}{2} n! (f(n) - H_n), \\ \begin{bmatrix}n+1 \\ 4\end{bmatrix}= & {} \sum _{k=3}^{n} \begin{bmatrix}n \\ k\end{bmatrix} \left( {\begin{array}{c}k\\ 3\end{array}}\right) = \sum _{k=1}^{n} \begin{bmatrix}n \\ k\end{bmatrix} \frac{k(k-1)(k-2)}{6} = \frac{1}{6} n! (g(n) - 3f(n) + 2H_n). \end{aligned}$$

That is, we have

$$\begin{aligned}&\displaystyle f(n) = \frac{2}{n!} \begin{bmatrix}n+1 \\ 3\end{bmatrix} + H_n, \text { and}\\&\displaystyle g(n) = \frac{6}{n!} \begin{bmatrix}n+1 \\ 4\end{bmatrix} + 3f(n) - 2H_n = \frac{6}{n!} \begin{bmatrix}n+1 \\ 4\end{bmatrix} + \frac{6}{n!} \begin{bmatrix}n+1 \\ 3\end{bmatrix} + H_n. \end{aligned}$$

It is known (cf. page 217 of [11]) that

$$\begin{aligned}&\displaystyle \frac{1}{n!} \begin{bmatrix}n+1 \\ 3\end{bmatrix} = \frac{1}{2} (H_n^2 - H_n^{(2)})\\&\displaystyle \frac{1}{n!} \begin{bmatrix}n+1 \\ 4\end{bmatrix} = \frac{1}{6} (H_n^3 - 3 H_n H_n^{(2)} + 2 H_n^{(3)}). \end{aligned}$$

It is also known that \(H_n = \gamma + \ln n\), \(\lim _{n \rightarrow \infty } H_n^{(2)} = \zeta (2) = \frac{\pi ^2}{6}\) and \(\lim _{n \rightarrow \infty } H_n^{(3)} = \zeta (3) \approx 1.202\), where \(\gamma \approx 0.577\) is Euler’s constant and \(\zeta (s) = \sum _{k=1}^{\infty } \frac{1}{k^s}\) is the Riemann zeta function. Hence we obtain

$$\begin{aligned} f(n) = H_n^2 - H_n^{(n)} + H_n \sim \ln ^2 n. \end{aligned}$$

Putting all together, we obtain

$$\begin{aligned} g(n) = \frac{6}{n!} \begin{bmatrix}n+1 \\ 4\end{bmatrix} + 3f(n) - 2H_n \sim \ln ^3 n. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, A.W., Zhou, S. A linear-time algorithm for the orbit problem over cyclic groups. Acta Informatica 53, 493–508 (2016). https://doi.org/10.1007/s00236-015-0251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-015-0251-0

Keywords

Navigation