Skip to main content
Log in

Whole-tumor histogram analysis of postcontrast T1-weighted and apparent diffusion coefficient in predicting the grade and proliferative activity of adult intracranial ependymomas

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the value of histogram analysis of postcontrast T1-weighted (T1C) and apparent diffusion coefficient (ADC) images in predicting the grade and proliferative activity of adult intracranial ependymomas.

Methods

Forty-seven adult intracranial ependymomas were enrolled and underwent histogram parameters extraction (including minimum, maximum, mean, 1st percentile (Perc.01), Perc.05, Perc.10, Perc.25, Perc.50, Perc.75, Perc.90, Perc.95, Perc.99, standard deviation (SD), variance, coefficient of variation (CV), skewness, kurtosis, and entropy of T1C and ADC) using FireVoxel software. Differences in histogram parameters between grade 2 and grade 3 adult intracranial ependymomas were compared. Receiver operating characteristic curves and logistic regression analyses were conducted to evaluate the diagnostic performance. Spearman’s correlation analysis was used to evaluate the relationship between histogram parameters and Ki-67 proliferation index.

Results

Grade 3 intracranial ependymomas group showed significantly higher Perc.95, Perc.99, SD, variance, CV, and entropy of T1C; lower minimum, mean, Perc.01, Perc.05, Perc.10, Perc.25, Perc.50 of ADC; and higher CV and entropy of ADC than grade 2 intracranial ependymomas group (all p < 0.05). Entropy (T1C) and Perc.10 (ADC) had a higher diagnostic performance with AUCs of 0.805 and 0.827 among the histogram parameters of T1C and ADC, respectively. The diagnostic performance was improved by combining entropy (T1C) and Perc.10 (ADC), with an AUC of 0.857. Significant correlations were observed between significant histogram parameters of T1C (r = 0.296–0.417, p = 0.001–0.044) and ADC (r = -0.428–0.395, p = 0.003–0.038).

Conclusion

Whole-tumor histogram analysis of T1C and ADC may be a promising approach for predicting the grade and proliferative activity of adult intracranial ependymomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are not publicly available; however, they can be provided by the corresponding author on reasonable request.

Abbreviations

CNS:

Central nervous system

T1C:

Postcontrast T1-weighted images

DWI:

Diffusion-weighted imaging

ADC:

Apparent diffusion coefficient

TE:

Echo time

TR:

Repetition time

FOV:

Field of view

SD:

Standard deviation

CV:

Coefficient of variation

ROC:

Receiver operating characteristic curve

AUC:

Area under the curve

ROI:

Region of interest

CI:

Confidence intervals

ICC:

Intraclass correlation coefficient

References

  1. Lombardi G, Della Puppa A, Pizzi M, Cerretti G, Bonaudo C, Gardiman MP, Dipasquale A, Gregucci F, Esposito A, De Bartolo D, Zagonel V, Simonelli M, Fiorentino A, Ducray F (2021) An overview of intracranial ependymomas in adults. Cancers (Basel) 13. https://doi.org/10.3390/cancers13236128

  2. Kresbach C, Neyazi S, Schuller U (2022) Updates in the classification of ependymal neoplasms: The 2021 WHO classification and beyond. Brain Pathol 32:e13068. https://doi.org/10.1111/bpa.13068

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smith HL, Wadhwani N, Horbinski C (2022) Major features of the 2021 WHO classification of CNS tumors. Neurotherapeutics 19:1691–1704. https://doi.org/10.1007/s13311-022-01249-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ruda R, Reifenberger G, Frappaz D, Pfister SM, Laprie A, Santarius T, Roth P, Tonn JC, Soffietti R, Weller M, Moyal EC (2018) EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro Oncol 20:445–456. https://doi.org/10.1093/neuonc/nox166

    Article  PubMed  Google Scholar 

  5. Deng X, Zhang X, Yang L, Lu X, Fang J, Yu L, Li D, Sheng H, Yin B, Zhang N, Lin J (2020) Personalizing age-specific survival prediction and risk stratification in intracranial grade II/III ependymoma. Cancer Med 9:615–625. https://doi.org/10.1002/cam4.2753

    Article  PubMed  Google Scholar 

  6. Lim KY, Lee K, Shim Y, Park JW, Kim H, Kang J, Won JK, Kim SK, Phi JH, Park CK, Chung CK, Yun H, Park SH (2022) Molecular subtyping of ependymoma and prognostic impact of Ki-67. Brain Tumor Pathol 39:1–13. https://doi.org/10.1007/s10014-021-00417-y

    Article  CAS  PubMed  Google Scholar 

  7. Xue C, Zhou Q, Zhang P, Zhang B, Sun Q, Li S, Deng J, Liu X, Zhou J (2023) MRI histogram analysis of tumor-infiltrating CD8+ T cell levels in patients with glioblastoma. Neuroimage Clin 37:103353. https://doi.org/10.1016/j.nicl.2023.103353

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gao A, Zhang H, Yan X, Wang S, Chen Q, Gao E, Qi J, Bai J, Zhang Y, Cheng J (2022) Whole-tumor histogram analysis of multiple diffusion metrics for glioma genotyping. Radiology 302:652–661. https://doi.org/10.1148/radiol.210820

    Article  PubMed  Google Scholar 

  9. Su Y, Kang J, Lin X, She D, Guo W, Xing Z, Yang X, Cao D (2023) Whole-tumor histogram analysis of diffusion and perfusion metrics for noninvasive pediatric glioma grading. Neuroradiology 65:1063–1071. https://doi.org/10.1007/s00234-023-03145-6

    Article  PubMed  Google Scholar 

  10. Zhang B, Zhou F, Zhou Q, Xue C, Ke X, Zhang P, Han T, Deng L, Jing M, Zhou J (2023) Whole-tumor histogram analysis of multi-parametric MRI for differentiating brain metastases histological subtypes in lung cancers: relationship with the Ki-67 proliferation index. Neurosurg Rev 46:218. https://doi.org/10.1007/s10143-023-02129-7

    Article  PubMed  Google Scholar 

  11. Vitanovics D, Balint K, Hanzely Z, Banczerowski P, Afra D (2010) Ependymoma in adults: surgery, reoperation and radiotherapy for survival. Pathol Oncol Res 16:93–99. https://doi.org/10.1007/s12253-009-9194-5

    Article  PubMed  Google Scholar 

  12. Dutzmann S, Schatlo B, Lobrinus A, Murek M, Wostrack M, Weiss C, Schaller K, Raabe A, Meyer B, Goldbrunner R, Franz K, Seifert V, Senft C (2013) A multi-center retrospective analysis of treatment effects and quality of life in adult patients with cranial ependymomas. J Neurooncol 114:319–327. https://doi.org/10.1007/s11060-013-1187-2

    Article  PubMed  Google Scholar 

  13. Korshunov A, Golanov A, Sycheva R, Timirgaz V (2004) The histologic grade is a main prognostic factor for patients with intracranial ependymomas treated in the microneurosurgical era: an analysis of 258 patients. Cancer 100:1230–1237. https://doi.org/10.1002/cncr.20075

    Article  PubMed  Google Scholar 

  14. Yuh EL, Barkovich AJ, Gupta N (2009) Imaging of ependymomas: MRI and CT. Childs Nerv Syst 25:1203–1213. https://doi.org/10.1007/s00381-009-0878-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nowak J, Seidel C, Pietsch T, Alkonyi B, Fuss TL, Friedrich C, von Hoff K, Rutkowski S, Warmuth-Metz M (2015) Systematic comparison of MRI findings in pediatric ependymoblastoma with ependymoma and CNS primitive neuroectodermal tumor not otherwise specified. Neuro Oncol 17:1157–1165. https://doi.org/10.1093/neuonc/nov063

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kuai XP, Wang SY, Lu YP, Xiong J, Geng DY, Yin B (2020) MRI features of intracranial anaplastic ependymomas: A comparison of Supratentorial and Infratentorial lesions. Front Oncol 10:1063. https://doi.org/10.3389/fonc.2020.01063

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xing Z, Zhou X, Xiao Z, She D, Wang X, Cao D (2020) Comparison of conventional, diffusion, and perfusion MRI between low-grade and anaplastic Extraventricular Ependymoma. AJR Am J Roentgenol 215:978–984. https://doi.org/10.2214/AJR.20.22764

    Article  PubMed  Google Scholar 

  18. Gihr GA, Horvath-Rizea D, Kohlhof-Meinecke P, Ganslandt O, Henkes H, Richter C, Hoffmann KT, Surov A, Schob S (2018) Histogram profiling of postcontrast T1-weighted MRI gives valuable insights into tumor biology and enables prediction of growth kinetics and prognosis in Meningiomas. Transl Oncol 11:957–961. https://doi.org/10.1016/j.tranon.2018.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li X, Miao Y, Han L, Dong J, Guo Y, Shang Y, Xie L, Song Q, Liu A (2019) Meningioma grading using conventional MRI histogram analysis based on 3D tumor measurement. Eur J Radiol 110:45–53. https://doi.org/10.1016/j.ejrad.2018.11.016

    Article  PubMed  Google Scholar 

  20. Yeo DM, Oh SN, Jung CK, Lee MA, Oh ST, Rha SE, Jung SE, Byun JY, Gall P, Son Y (2015) Correlation of dynamic contrast-enhanced MRI perfusion parameters with angiogenesis and biologic aggressiveness of rectal cancer: Preliminary results. J Magn Reson Imaging 41:474–480. https://doi.org/10.1002/jmri.24541

    Article  PubMed  Google Scholar 

  21. Chen YL, Li R, Chen TW, Ou J, Zhang XM, Chen F, Wu L, Jiang Y, Laws M, Shah K, Joseph B, Hu J (2019) Whole-tumour histogram analysis of pharmacokinetic parameters from dynamic contrast-enhanced MRI in resectable oesophageal squamous cell carcinoma can predict T-stage and regional lymph node metastasis. Eur J Radiol 112:112–120. https://doi.org/10.1016/j.ejrad.2019.01.012

    Article  PubMed  Google Scholar 

  22. Ghosh A, Yekeler E, Dalal D, Holroyd A, States L (2022) Whole-tumour apparent diffusion coefficient (ADC) histogram analysis to identify MYCN-amplification in neuroblastomas: preliminary results. Eur Radiol 32:8453–8462. https://doi.org/10.1007/s00330-022-08750-2

    Article  CAS  PubMed  Google Scholar 

  23. Bozdag M, Er A, Ekmekci S (2021) Association of apparent diffusion coefficient with Ki-67 proliferation index, progesterone-receptor status and various histopathological parameters, and its utility in predicting the high grade in meningiomas. Acta Radiol 62:401–413. https://doi.org/10.1177/0284185120922142

    Article  PubMed  Google Scholar 

  24. Deng J, Xue C, Liu X, Li S, Zhou J (2023) Differentiating between adult intracranial medulloblastoma and ependymoma using MRI. Clin Radiol 78:e288–e293. https://doi.org/10.1016/j.crad.2022.11.016

    Article  CAS  PubMed  Google Scholar 

  25. Xianwang L, Lei H, Hong L, Juan D, Shenglin L, Caiqiang X, Yan H, Junlin Z (2021) Apparent diffusion coefficient to evaluate adult intracranial ependymomas: Relationship to Ki-67 proliferation index. J Neuroimaging 31:132–136. https://doi.org/10.1111/jon.12789

    Article  PubMed  Google Scholar 

  26. Wang X, Han F, Lv Y, Gao J, Du Z, Zhang J (2021) Supratentorial extraventricular ependymomas: Imaging features and the added value of apparent diffusion coefficient. J Comput Assist Tomogr 45:463–471. https://doi.org/10.1097/RCT.0000000000001164

    Article  PubMed  Google Scholar 

  27. Tensaouti F, Ducassou A, Chaltiel L, Sevely A, Bolle S, Muracciole X, Coche-Dequant B, Alapetite C, Supiot S, Huchet A, Bernier V, Claude L, Bertozzi-Salamon AI, Liceaga S, Lotterie JA, Peran P, Payoux P, Laprie A, radiotherapy committee of the French Society for Childhood C (2016) Prognostic and predictive values of diffusion and perfusion MRI in paediatric intracranial ependymomas in a large national study. Br J Radiol 89:20160537. https://doi.org/10.1259/bjr.20160537

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bohara M, Nakajo M, Kamimura K, Yoneyama T, Fukukura Y, Kiyao Y, Yonezawa H, Higa N, Kirishima M, Yoshiura T (2020) Histological grade of Meningioma: Prediction by intravoxel incoherent motion histogram parameters. Acad Radiol 27:342–353. https://doi.org/10.1016/j.acra.2019.04.012

    Article  PubMed  Google Scholar 

  29. Surov A, Gottschling S, Mawrin C, Prell J, Spielmann RP, Wienke A, Fiedler E (2015) Diffusion-weighted imaging in meningioma: prediction of tumor grade and association with histopathological parameters. Transl Oncol 8:517–523. https://doi.org/10.1016/j.tranon.2015.11.012

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ma X, Ren X, Shen M, Ma F, Chen X, Zhang G, Qiang J (2022) Volumetric ADC histogram analysis for preoperative evaluation of LVSI status in stage I endometrioid adenocarcinoma. Eur Radiol 32:460–469. https://doi.org/10.1007/s00330-021-07996-6

    Article  PubMed  Google Scholar 

  31. Yang H, Liu X, Jiang J, Zhou J (2022) Apparent diffusion coefficient histogram analysis to preoperative evaluate intracranial solitary fibrous tumor: Relationship to Ki-67 proliferation index. Clin Neurol Neurosurg 220:107364. https://doi.org/10.1016/j.clineuro.2022.107364

    Article  PubMed  Google Scholar 

  32. Liu X, Deng J, Sun Q, Xue C, Li S, Zhou Q, Huang X, Liu H, Zhou J (2022) Differentiation of intracranial solitary fibrous tumor/hemangiopericytoma from atypical meningioma using apparent diffusion coefficient histogram analysis. Neurosurg Rev 45:2449–2456. https://doi.org/10.1007/s10143-022-01771-x

    Article  PubMed  Google Scholar 

  33. He W, Xiao X, Li X, Guo Y, Guo L, Liu X, Xu Y, Zhou J, Wu Y (2019) Whole-tumor histogram analysis of apparent diffusion coefficient in differentiating intracranial solitary fibrous tumor/hemangiopericytoma from angiomatous meningioma. Eur J Radiol 112:186–191. https://doi.org/10.1016/j.ejrad.2019.01.023

    Article  PubMed  Google Scholar 

  34. Ren J, Yuan Y, Tao X (2022) Histogram analysis of diffusion-weighted imaging and dynamic contrast-enhanced MRI for predicting occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma. Eur Radiol 32:2739–2747. https://doi.org/10.1007/s00330-021-08310-0

    Article  PubMed  Google Scholar 

  35. Xue C, Liu S, Deng J, Liu X, Li S, Zhang P, Zhou J (2022) Apparent diffusion coefficient histogram analysis for the preoperative evaluation of Ki-67 expression in pituitary Macroadenoma. Clin Neuroradiol 32:269–276. https://doi.org/10.1007/s00062-021-01134-x

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82071872; 82260341; 82260361; 82371914), the 2021 SKY Imaging Research Fund of China International Medical Exchange Foundation (Z-2014–07-2101), and the Science and Technology Program of Gansu Province (21YF5FA123; 21JR11RA105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junlin Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Ethical approval (2020A-070) was obtained from our institutional ethics review board.

Informed consent

Informed consent Informed consent for this retrospective study was waived by the institutional ethics committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Han, T., Wang, Y. et al. Whole-tumor histogram analysis of postcontrast T1-weighted and apparent diffusion coefficient in predicting the grade and proliferative activity of adult intracranial ependymomas. Neuroradiology 66, 531–541 (2024). https://doi.org/10.1007/s00234-024-03319-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-024-03319-w

Keywords

Navigation