Skip to main content

Advertisement

Log in

Multiparametric MRI-based fusion radiomics for predicting telomerase reverse transcriptase (TERT) promoter mutations and progression-free survival in glioblastoma: a multicentre study

  • Advanced Neuroimaging
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

This study evaluated the performance of multiparametric magnetic resonance imaging (MRI)–based fusion radiomics models (MMFRs) to predict telomerase reverse transcriptase (TERT) promoter mutation status and progression-free survival (PFS) in glioblastoma patients.

Methods

We retrospectively analysed 208 glioblastoma patients from two hospitals. Quantitative imaging features were extracted from each patient’s T1-weighted, T1-weighted contrast-enhanced, and T2-weighted preoperative images. Using a coarse-to-fine feature selection strategy, four radiomics signature models were constructed based on the three MRI sequences and their combination for TERT promoter mutation status and PFS; model performance was subsequently evaluated. Subgroup analyses were performed by the radiomics signature of TERT promoter mutation status and PFS to distinguish patients who could benefit from prolonged temozolomide chemotherapy cycles.

Results

TERT promoter mutation status was best predicted by MMFR, with an area under the curve (AUC) of 0.816 and 0.812 for the training and internal validation sets, respectively. The external test set also achieved stable and optimal prediction results (AUC, 0.823). MMFR better predicted patient PFS compared with the single-sequence radiomics signature in the test set (C-index, 0.643 vs 0.561 vs 0.620 vs 0.628). Subgroup analyses showed that more than six cycles of postoperative temozolomide chemotherapy were associated with improved PFS for patients in class 2 (high TERT promoter mutation and high survival rates; HR, 0.222; 95% CI, 0.054 − 0.923; p = 0.025).

Conclusion

MMFR is an effective method to predict TERT promoter mutations and PFS in patients with glioblastoma. Moreover, subgroup analysis could differentiate patients who may benefit from prolonged TMZ chemotherapy cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310:1842–1850. https://doi.org/10.1001/jama.2013.280319

    Article  CAS  PubMed  Google Scholar 

  2. Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2021) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol 23:iii1–iii105. https://doi.org/10.1093/neuonc/noab200

    Article  PubMed  PubMed Central  Google Scholar 

  3. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508. https://doi.org/10.1056/NEJMoa1407279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Labussiere M, Boisselier B, Mokhtari K, Di Stefano AL, Rahimian A, Rossetto M et al (2014) Combined analysis of TERT, EGFR, and IDH status defines distinct prognostic glioblastoma classes. Neurology 83:1200–1206. https://doi.org/10.1212/WNL.0000000000000814

    Article  CAS  PubMed  Google Scholar 

  6. Sarria GR, Sperk E, Han X, Sarria GJ, Wenz F, Brehmer S et al (2020) Intraoperative radiotherapy for glioblastoma: an international pooled analysis. Radiother Oncol 142:162–167. https://doi.org/10.1016/j.radonc.2019.09.023

    Article  PubMed  Google Scholar 

  7. Brandes AA, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F et al (2008) Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 10:361–367. https://doi.org/10.1215/15228517-2008-008

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee Y, Koh J, Kim SI, Won JK, Park CK, Choi SH et al (2017) The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas. Acta Neuropathol Commun 5:62. https://doi.org/10.1186/s40478-017-0465-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B et al (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318:2306–2316. https://doi.org/10.1001/jama.2017.18718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nabors LB, Portnow J, Ahluwalia M, Baehring J, Brem H, Brem S et al (2020) Central nervous system cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 18:1537–1570. https://doi.org/10.6004/jnccn.2020.0052

    Article  PubMed  Google Scholar 

  11. Ikeda S, Sakata A, Fushimi Y, Okuchi S, Arakawa Y, Makino Y et al (2023) Telomerase reverse transcriptase promoter mutation and histologic grade in IDH wild-type histological lower-grade gliomas: the value of perfusion-weighted image, diffusion-weighted image, and (18)F-FDG-PET. Eur J Radiol 159:110658. https://doi.org/10.1016/j.ejrad.2022.110658

    Article  PubMed  Google Scholar 

  12. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141

    Article  PubMed  Google Scholar 

  13. Haller S, Van Cauter S, Federau C, Hedderich DM, Edjlali M (2022) The R-AI-DIOLOGY checklist: a practical checklist for evaluation of artificial intelligence tools in clinical neuroradiology. Neuroradiology 64:851–864. https://doi.org/10.1007/s00234-021-02890-w

    Article  PubMed  Google Scholar 

  14. Zhu H, Zhang Y, Li C, Ma C, Liang F, Liang S et al (2023) Quantitative evaluation of the hemodynamic differences between ruptured and unruptured cerebral arteriovenous malformations using angiographic parametric imaging-derived radiomics features. Neuroradiology 65:185–194. https://doi.org/10.1007/s00234-022-03030-8

    Article  PubMed  Google Scholar 

  15. Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A (2022) Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol 19:132–146. https://doi.org/10.1038/s41571-021-00560-7

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Li J, Liao X, Luo Z, Xu Q, Pan H et al (2022) Radiomics-based MRI for predicting Erythropoietin-producing hepatocellular receptor A2 expression and tumor grade in brain diffuse gliomas. Neuroradiology 64:323–331. https://doi.org/10.1007/s00234-021-02780-1

    Article  PubMed  Google Scholar 

  17. Wang P, He J, Ma X, Weng L, Wu Q, Zhao P et al (2023) Applying MAP-MRI to identify the WHO grade and main genetic features of adult-type diffuse gliomas: a comparison of three diffusion-weighted MRI models. Acad Radiol 30:1238–1246. https://doi.org/10.1016/j.acra.2022.10.009

    Article  PubMed  Google Scholar 

  18. Pease M, Gersey ZC, Ak M, Elakkad A, Kotrotsou A, Zenkin S et al (2022) Pre-operative MRI radiomics model non-invasively predicts key genomic markers and survival in glioblastoma patients. J Neurooncol 160:253–263. https://doi.org/10.1007/s11060-022-04150-0

    Article  CAS  PubMed  Google Scholar 

  19. Bhandari AP, Liong R, Koppen J, Murthy SV, Lasocki A (2021) Noninvasive determination of IDH and 1p19q status of lower-grade gliomas using MRI radiomics: a systematic review. AJNR Am J Neuroradiol 42:94–101. https://doi.org/10.3174/ajnr.A6875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park CJ, Han K, Kim H, Ahn SS, Choi D, Park YW et al (2021) MRI features may predict molecular features of glioblastoma in isocitrate dehydrogenase wild-type lower-grade gliomas. AJNR Am J Neuroradiol 42:448–456. https://doi.org/10.3174/ajnr.A6983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu J, Li X, Li H (2022) A radiomics feature-based nomogram to predict telomerase reverse transcriptase promoter mutation status and the prognosis of lower-grade gliomas. Clin Radiol 77:e560–e567. https://doi.org/10.1016/j.crad.2022.04.005

    Article  CAS  PubMed  Google Scholar 

  22. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972. https://doi.org/10.1200/JCO.2009.26.3541

    Article  PubMed  Google Scholar 

  23. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X et al (2016) Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol 34:2157–2164. https://doi.org/10.1200/JCO.2015.65.9128

    Article  PubMed  Google Scholar 

  24. Zhang M, Wong SW, Wright JN, Wagner MW, Toescu S, Han M et al (2022) MRI radiogenomics of pediatric medulloblastoma: a multicenter study. Radiology 304:406–416. https://doi.org/10.1148/radiol.212137

    Article  PubMed  Google Scholar 

  25. Yan J, Zhang B, Zhang S, Cheng J, Liu X, Wang W et al (2021) Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients. NPJ Precis Oncol 5:72. https://doi.org/10.1038/s41698-021-00205-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nanda R, Nath A, Patel S, Mohapatra E (2022) Machine learning algorithm to evaluate risk factors of diabetic foot ulcers and its severity. Med Biol Eng Comput 60:2349–2357. https://doi.org/10.1007/s11517-022-02617-w

    Article  PubMed  Google Scholar 

  27. Byeon SK, Madugundu AK, Garapati K, Ramarajan MG, Saraswat M, Kumar MP et al (2022) Development of a multiomics model for identification of predictive biomarkers for COVID-19 severity: a retrospective cohort study. Lancet Digit Health 4:e632–e645. https://doi.org/10.1016/S2589-7500(22)00112-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hwangbo L, Kang YJ, Kwon H, Lee JI, Cho HJ, Ko JK et al (2022) Stacking ensemble learning model to predict 6-month mortality in ischemic stroke patients. Sci Rep 12:17389. https://doi.org/10.1038/s41598-022-22323-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang G, Sha Y, Wang X, Tan Y, Zhang H (2022) Radiomics profiling identifies the incremental value of MRI features beyond key molecular biomarkers for the risk stratification of high-grade gliomas. Contrast Media Mol Imaging 2022:8952357. https://doi.org/10.1155/2022/8952357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pak E, Choi KS, Choi SH, Park CK, Kim TM, Park SH et al (2021) Prediction of prognosis in glioblastoma using radiomics features of dynamic contrast-enhanced MRI. Korean J Radiol 22:1514–1524. https://doi.org/10.3348/kjr.2020.1433

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brat DJ, Aldape K, Colman H, Figrarella-Branger D, Fuller GN, Giannini C et al (2020) cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 139:603–608. https://doi.org/10.1007/s00401-020-02127-9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kikuchi Z, Shibahara I, Yamaki T, Yoshioka E, Shofuda T, Ohe R et al (2020) TERT promoter mutation associated with multifocal phenotype and poor prognosis in patients with IDH wild-type glioblastoma. Neurooncol Adv 2:vdaa114. https://doi.org/10.1093/noajnl/vdaa114

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563. https://doi.org/10.1016/j.cell.2015.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chibbaro SBL, Caprio A, Carnesecchi S, Pulerà F, Faggionato F, Serino D, Galli C, Andreuccetti M, Buxton N, Gagliardi R (2004) Temozolomide as first-line agent in treating high-grade gliomas: phase II study. J Neurooncol 67:77–81. https://doi.org/10.1023/b:neon.0000021728.36747.93

    Article  CAS  PubMed  Google Scholar 

  35. Tesileanu CMS, Sanson M, Wick W, Brandes AA, Clement PM, Erridge SC et al (2022) Temozolomide and radiotherapy versus radiotherapy alone in patients with glioblastoma, IDH-wildtype: post hoc analysis of the EORTC randomized phase III CATNON trial. Clin Cancer Res 28:2527–2535. https://doi.org/10.1158/1078-0432.CCR-21-4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aum DJ, Kim DH, Beaumont TL, Leuthardt EC, Dunn GP, Kim AH (2014) Molecular and cellular heterogeneity: the hallmark of glioblastoma. Neurosurg Focus 37:E11. https://doi.org/10.3171/2014.9.FOCUS14521

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application for its technical support.

Funding

This work was supported by a grant from the National Natural Science Foundation of China (Grant Number: 82071871); Youth Exploration Fund of Shenzhen Health Economics Society, China (Grant Number: 202211); Science and Technology Program of Guangzhou (202102080257); and Medical Science and Technology Research Foundation of Guangdong province (A2021405).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Lei or Biao Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The Institutional Review Board approved the design of this retrospective study (ID: KY-Z-2020–139-02). This manuscript has not been published or presented elsewhere in part or in entirety and is not under consideration by another journal. All authors have participated sufficiently to take public responsibility for the content of the manuscript and have approved its submission to the journal. We have read and understood your journal’s policies, and we believe that neither the manuscript nor the study violates any of these.

Informed consent

The Institutional Review Board has approved the study design and waived the requirement for informed patient consent due to the retrospective nature of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 96 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, H., Zhang, Y. et al. Multiparametric MRI-based fusion radiomics for predicting telomerase reverse transcriptase (TERT) promoter mutations and progression-free survival in glioblastoma: a multicentre study. Neuroradiology 66, 81–92 (2024). https://doi.org/10.1007/s00234-023-03245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-023-03245-3

Keywords

Navigation