Skip to main content

Advertisement

Log in

Middle cingulate cortex function contributes to response to non-steroidal anti-inflammatory drug in cervical spondylosis patients: a preliminary resting-state fMRI study

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

A Correction to this article was published on 27 May 2022

This article has been updated

Abstract

Background and objective

Cervical spondylosis (CS) is often accompanied by persistent cervical pain, and psychological complications including depression and anxiety, which aggravate pain. Past studies have revealed brain alterations in chronic pain patients. However, the cortical mechanism for NSAID (non-steroidal anti-inflammatory drug) responders relative to non-responders is still lacking. Therefore, we aimed to investigate the brain functional differences between responders to NSAID relative to non-responders using amplitude of low-frequency fluctuation (ALFF) and dynamic functional connectivity variance (DFCV). To our knowledge, our study is the first to investigate the DFCV in CS patients.

Materials and methods

We first explored the differences in psychological inventories in CS patients who respond to NSAID vs non-responders. The voxel-wise ALFF was calculated and compared between CS patients and healthy controls. The ALFF within the resultant clusters were extracted and compared between responders and non-responders. DFCV among the resulting clusters was compared in responders vs non-responders.

Results

We found that (1) compared to responders, non-responders exhibited higher levels of anxiety and depression; (2) relative to healthy controls, CS patients exhibited altered ALFF within the middle cingulate cortice (MCC), cerebellum, and middle frontal gyrus (MFG); (3) moreover, compared with responders, non-responders exhibited lower ALFF within MCC; furthermore, non-responders also exhibited increased DFCV between MCC and cerebellum, and between MCC and MFG.

Conclusion

Our data indicate that psychological comorbidities (e.g., anxiety) influence response to NSAID in CS patients. Relative to NSAID responders, non-responders had altered MCC function, which may be associated with anxiety in CS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code availability

The codes used in this study can be availed upon reasonable request.

Change history

References

  1. Bilal J, Berlinberg A, Trost J, Riaz IB, Bhattacharjee S (2020) The influence of depression on health care expenditures among adults with spondylosis, intervertebral disc disorders, and other back problems in the United States. Pain Med (Malden, Mass.) 21:e45–e53

    Article  Google Scholar 

  2. Lin SY, Sung FC, Lin CL, Chou LW, Hsu CY, Kao CH (2018) Association of depression and cervical spondylosis: a nationwide retrospective propensity score-matched cohort study. J Clin Med 7:387

    Article  PubMed Central  Google Scholar 

  3. Pei F, Hu WJ, Mao YN, Zhao YL (2021) The efficacy of acupuncture combined with Bailemian capsule in the treatment of cervical spondylosis accompanied by headache, anxiety, and depression. Explore, New York

    Book  Google Scholar 

  4. AslanTelci E, Karaduman A (2012) Effects of three different conservative treatments on pain, disability, quality of life, and mood in patients with cervical spondylosis. Rheumatol Int 32:1033–40

    Article  Google Scholar 

  5. Jones MR, Ehrhardt KP, Ripoll JG, Sharma B, Padnos IW, Kaye RJ, Kaye AD (2016) Pain in the elderly. Curr Pain Headache Rep 20:23

    Article  PubMed  Google Scholar 

  6. Kim EJ, Chotai S, Schneider BJ, Sivaganesan A, McGirt MJ, Devin CJ (2018) Effect of depression on patient-reported outcomes following cervical epidural steroid injection for degenerative spine disease. Pain Med (Malden, Mass.) 19:2371–2376

    Article  Google Scholar 

  7. Ananías J, Irarrázaval S (2017) Is duloxetine an alternative in the treatment of osteoarthritis? Medwave 17:e7063

    Article  PubMed  Google Scholar 

  8. Osani MC, Bannuru RR (2019) Efficacy and safety of duloxetine in osteoarthritis: a systematic review and meta-analysis. Korean J Intern Med 34:966–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee JJ, Kim HJ, Čeko M, Park BY, Lee SA, Park H, Roy M, Kim SG, Wager TD, Woo CW (2021) A neuroimaging biomarker for sustained experimental and clinical pain. Nat Med 27:174–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mouraux A, Iannetti GD (2018) The search for pain biomarkers in the human brain. Brain: J Neurol 141:3290–3307

    Article  Google Scholar 

  11. Reckziegel D, Vachon-Presseau E, Petre B, Schnitzer TJ, Baliki MN, Apkarian AV (2019) Deconstructing biomarkers for chronic pain: context- and hypothesis-dependent biomarker types in relation to chronic pain. Pain 160(Suppl 1):S37-s48

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reddan MC, Wager TD (2018) Modeling pain using fMRI: from regions to biomarkers. Neurosci Bull 34:208–215

    Article  PubMed  Google Scholar 

  13. Asad AB, Seah S, Baumgartner R, Feng D, Jensen A, Manigbas E, Henry B, Houghton A, Evelhoch JL, Derbyshire SW, Chin CL (2016) Distinct BOLD fMRI responses of capsaicin-induced thermal sensation reveal pain-related brain activation in nonhuman primates. PloS one 11:e0156805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Liu J, Chen L, Tu Y, Chen X, Hu K, Tu Y, Lin M, Xie G, Chen S, Huang J, Liu W, Wu J, Xiao T, Wilson G, Lang C, Park J, Tao J, Kong J (2019) Different exercise modalities relieve pain syndrome in patients with knee osteoarthritis and modulate the dorsolateral prefrontal cortex: a multiple mode MRI study. Brain Behav Immun 82:253–263

    Article  PubMed  Google Scholar 

  15. Reckziegel D, Abdullah T, Wu B, Wu B, Huang L, Schnitzer TJ, Apkarian AV (2021) Hippocampus shape deformation: a potential diagnostic biomarker for chronic back pain in women. Pain 162:1457–1467

    Article  CAS  PubMed  Google Scholar 

  16. Zhao F, Williams M, Bowlby M, Houghton A, Hargreaves R, Evelhoch J, Williams DS (2014) Qualification of fMRI as a biomarker for pain in anesthetized rats by comparison with behavioral response in conscious rats. Neuroimage 84:724–732

    Article  PubMed  Google Scholar 

  17. Malfliet A, Coppieters I, Van Wilgen P, Kregel J, De Pauw R, Dolphens M, Ickmans K (2017) Brain changes associated with cognitive and emotional factors in chronic pain: a systematic review. Eur J Pain (London, England) 21:769–786

    Article  CAS  Google Scholar 

  18. Mills EP, Di Pietro F, Alshelh Z, Peck CC, Murray GM, Vickers ER, Henderson LA (2018) Brainstem pain-control circuitry connectivity in chronic neuropathic pain. J Neurosci: Off J Soc Neurosci 38:465–473

    Article  CAS  Google Scholar 

  19. Seminowicz DA, Moayedi M (2017) The dorsolateral prefrontal cortex in acute and chronic pain. J Pain 18:1027–1035

    Article  PubMed  PubMed Central  Google Scholar 

  20. Weizman L, Dayan L, Brill S, Nahman-Averbuch H, Hendler T, Jacob G, Sharon H (2018) Cannabis analgesia in chronic neuropathic pain is associated with altered brain connectivity. Neurology 91:e1285–e1294

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li H, Li X, Feng Y, Gao F, Kong Y, Hu L (2020) Deficits in ascending and descending pain modulation pathways in patients with postherpetic neuralgia. NeuroImage 221:117186

    Article  PubMed  Google Scholar 

  22. Bishop JH, Shpaner M, Kubicki A, Clements S, Watts R, Naylor MR (2018) Structural network differences in chronic muskuloskeletal pain: Beyond fractional anisotropy. Neuroimage 182:441–455

    Article  PubMed  Google Scholar 

  23. Kim H, Mawla I, Lee J, Gerber J, Walker K, Kim J, Ortiz A, Chan ST, Loggia ML, Wasan AD, Edwards RR, Kong J, Kaptchuk TJ, Gollub RL, Rosen BR, Napadow V (2020) Reduced tactile acuity in chronic low back pain is linked with structural neuroplasticity in primary somatosensory cortex and is modulated by acupuncture therapy. NeuroImage 217:116899

    Article  PubMed  Google Scholar 

  24. Li Y, Zhang T, Li W, Zhang J, Jin Z, Li L (2020) Linking brain structure and activation in anterior insula cortex to explain the trait empathy for pain. Hum Brain Mapp 41:1030–1042

    Article  PubMed  Google Scholar 

  25. Li Z, Zhou J, Lan L, Cheng S, Sun R, Gong Q, Wintermark M, Zeng F, Liang F (2020) Concurrent brain structural and functional alterations in patients with migraine without aura: an fMRI study. J Headache Pain 21:141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Obermann M, Rodriguez-Raecke R, Naegel S, Holle D, Mueller D, Yoon MS, Theysohn N, Blex S, Diener HC, Katsarava Z (2013) Gray matter volume reduction reflects chronic pain in trigeminal neuralgia. Neuroimage 74:352–358

    Article  PubMed  Google Scholar 

  27. Pan PL, Zhong JG, Shang HF, Zhu YL, Xiao PR, Dai ZY, Shi HC (2015) Quantitative meta-analysis of grey matter anomalies in neuropathic pain. Eur J Pain (London, England) 19:1224–1231

    Article  CAS  Google Scholar 

  28. Zhang X, Chen Q, Su Y, Meng J, Qiu J, Zheng W (2020) Pain in the default mode network: a voxel-based morphometry study on thermal pain sensitivity. NeuroReport 31:1030–1035

    Article  CAS  PubMed  Google Scholar 

  29. Coppieters I, Meeus M, Kregel J, Caeyenberghs K, De Pauw R, Goubert D, Cagnie B (2016) Relations between brain alterations and clinical pain measures in chronic musculoskeletal pain: a systematic review. J Pain 17:949–962

    Article  PubMed  Google Scholar 

  30. Coppieters I, De Pauw R, Kregel J, Malfliet A, Goubert D, Lenoir D, Cagnie B, Meeus M (2017) Differences between women with traumatic and idiopathic chronic neck pain and women without neck pain: interrelationships among disability, cognitive deficits, and central sensitization. Phys Ther 97:338–353

    PubMed  Google Scholar 

  31. De Pauw R, Aerts H, Siugzdaite R, Meeus M, Coppieters I, Caeyenberghs K, Cagnie B (2020) Hub disruption in patients with chronic neck pain: a graph analytical approach. Pain 161:729–741

    Article  PubMed  Google Scholar 

  32. Fu Z, Tu Y, Di X, Du Y, Pearlson GD, Turner JA, Biswal BB, Zhang Z, Calhoun VD (2018) Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: an application to schizophrenia. Neuroimage 180:619–631

    Article  PubMed  Google Scholar 

  33. Bosma RL, Kim JA, Cheng JC, Rogachov A, Hemington KS, Osborne NR, Oh J, Davis KD (2018) Dynamic pain connectome functional connectivity and oscillations reflect multiple sclerosis pain. Pain 159:2267–2276

    Article  PubMed  Google Scholar 

  34. Cheng JC, Anzolin A, Berry M, Honari H, Paschali M, Lazaridou A, Lee J, Ellingsen DM, Loggia ML, Grahl A, Lindquist MA, Edwards RR, Napadow V (2022) Dynamic functional brain connectivity underlying temporal summation of pain in fibromyalgia. Arthritis Rheumatol (Hoboken, N.J.) 74:700–710

    Article  Google Scholar 

  35. Mills EP, Akhter R, Di Pietro F, Murray GM, Peck CC, Macey PM, Henderson LA (2021) Altered brainstem pain modulating circuitry functional connectivity in chronic painful temporomandibular disorder. J Pain 22:219–232

    Article  PubMed  Google Scholar 

  36. Necka EA, Lee IS, Kucyi A, Cheng JC, Yu Q, Atlas LY (2019) Applications of dynamic functional connectivity to pain and its modulation. Pain Rep 4:e752

    Article  PubMed  PubMed Central  Google Scholar 

  37. Theodore N (2020) Degenerative cervical spondylosis. N Engl J Med 383:159–168

    Article  CAS  PubMed  Google Scholar 

  38. Myles PS, Myles DB, Galagher W, Boyd D, Chew C, MacDonald N, Dennis A (2017) Measuring acute postoperative pain using the visual analog scale: the minimal clinically important difference and patient acceptable symptom state. Br J Anaesth 118:424–429

    Article  CAS  PubMed  Google Scholar 

  39. Liao W, Wu GR, Xu Q, Ji GJ, Zhang Z, Zang YF, Lu G (2014) DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis. Brain Connect 4:780–790

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dong WK, Chudler EH, Sugiyama K, Roberts VJ, Hayashi T (1994) Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 72:542–564

    Article  CAS  PubMed  Google Scholar 

  41. Tan LL, Pelzer P, Heinl C, Tang W, Gangadharan V, Flor H, Sprengel R, Kuner T, Kuner R (2017) A pathway from midcingulate cortex to posterior insula gates nociceptive hypersensitivity. Nat Neurosci 20:1591–1601

    Article  CAS  PubMed  Google Scholar 

  42. Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM, Dougherty DD, Bush G, Eskandar EN (2012) Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488:218–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD (2004) Empathy for pain involves the affective but not sensory components of pain. Science (New York, N.Y.) 303:1157–62

    Article  CAS  Google Scholar 

  44. Hubbard CS, Khan SA, Keaser ML, Mathur VA, Goyal M, Seminowicz DA (2014) Altered brain structure and function correlate with disease severity and pain catastrophizing in migraine patients. eNeuro 1:e20.14

    Article  PubMed  Google Scholar 

  45. Yang Q, Xu H, Zhang M, Wang Y, Li D (2020) Volumetric and functional connectivity alterations in patients with chronic cervical spondylotic pain. Neuroradiology 62:995–1001

    Article  PubMed  Google Scholar 

  46. Mathew SJ, Mao X, Coplan JD, Smith EL, Sackeim HA, Gorman JM, Shungu DC (2004) Dorsolateral prefrontal cortical pathology in generalized anxiety disorder: a proton magnetic resonance spectroscopic imaging study. Am J Psychiatry 161:1119–1121

    Article  PubMed  Google Scholar 

  47. Yang FC, Chou KH, Fuh JL, Huang CC, Lirng JF, Lin YY, Lin CP, Wang SJ (2013) Altered gray matter volume in the frontal pain modulation network in patients with cluster headache. Pain 154:801–807

    Article  PubMed  Google Scholar 

  48. Vialou V, Bagot RC, Cahill ME, Ferguson D, Robison AJ, Dietz DM, Fallon B, Mazei-Robison M, Ku SM, Harrigan E, Winstanley CA, Joshi T, Feng J, Berton O, Nestler EJ (2014) Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: role of ΔFosB. J Neurosci: Off J Soc Neurosci 34:3878–3887

    Article  CAS  Google Scholar 

  49. Helmchen C, Mohr C, Erdmann C, Petersen D, Nitschke MF (2003) Differential cerebellar activation related to perceived pain intensity during noxious thermal stimulation in humans: a functional magnetic resonance imaging study. Neurosci Lett 335:202–206

    Article  CAS  PubMed  Google Scholar 

  50. Jensen KB, Regenbogen C, Ohse MC, Frasnelli J, Freiherr J, Lundström JN (2016) Brain activations during pain: a neuroimaging meta-analysis of patients with pain and healthy controls. Pain 157:1279–1286

    Article  PubMed  Google Scholar 

  51. Moulton EA, Schmahmann JD, Becerra L, Borsook D (2010) The cerebellum and pain: passive integrator or active participator? Brain Res Rev 65:14–27

    Article  PubMed  PubMed Central  Google Scholar 

  52. Borsook D, Moulton EA, Tully S, Schmahmann JD, Becerra L (2008) Human cerebellar responses to brush and heat stimuli in healthy and neuropathic pain subjects. Cerebellum (London, England) 7:252–272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhuang Quankui and Bai Liang designed the study. Li Wei, Meng Yong, Zhao Yaowei, Wang Yemi, and Zeng Qingliang collected the data. Bai Liang, Li Yang, and Ma Dongya analyzed the data. Bai Liang, Zhang Lei, and Chen Yong wrote the manuscript.

Corresponding author

Correspondence to Quankui Zhuang.

Ethics declarations

Ethics approval

Institutional Review Board of The Second People’s Hospital of Fuyang City approval was obtained.

Consent to participate

Written informed consent was obtained from all subjects in this study.

Consent for publication

Informed consent was obtained from all authors for publication in this study.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Originally, the article has been published online with inverted author names. This has been corrected above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Zhang, L., Chen, Y. et al. Middle cingulate cortex function contributes to response to non-steroidal anti-inflammatory drug in cervical spondylosis patients: a preliminary resting-state fMRI study. Neuroradiology 64, 1401–1410 (2022). https://doi.org/10.1007/s00234-022-02964-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-022-02964-3

Keywords

Navigation