Skip to main content

Advertisement

Log in

Multiparametric flow analysis using four-dimensional flow magnetic resonance imaging can detect cerebral hemodynamic impairment in patients with internal carotid artery stenosis

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

MRI-based risk stratification should be established to identify patients with internal carotid artery stenosis (ICS) who require further PET or SPECT evaluation. This study assessed whether multiparametric flow analysis using time-resolved 3D phase-contrast (4D flow) MRI can detect cerebral hemodynamic impairment in patients with ICS.

Methods

This retrospective study analyzed 26 consecutive patients with unilateral ICS (21 men; mean age, 71 years) who underwent 4D flow MRI and acetazolamide-stress brain perfusion SPECT. Collateral flow via the Willis ring was visually evaluated. Temporal mean flow volume rate (Net), pulsatile flow volume (ΔV), and pulsatility index (PI) at the middle cerebral artery were measured. Cerebral vascular reserve (CVR) was calculated from the SPECT dataset. Patients were assigned to the misery perfusion group if the CVR was < 10% and to the nonmisery perfusion group if the CVR was ≥ 10%. Parameters showing a significant difference in both groups were statistically evaluated.

Results

Affected side ΔV, ratio of affected to contralateral side Net (rNet), and ratio of affected to contralateral side ΔV were significantly correlated to CVR (p = 0.030, p = 0.010, p = 0.015, respectively). Absence of retrograde flow at the posterior communicating artery was observed in the misery perfusion group (p = 0.020). Combined cut-off values of the affected side ΔV (0.18 ml) and rNet (0.64) showed a sensitivity and specificity of 100% and 77.8%, respectively.

Conclusion

Multiparametric flow analysis using 4D flow MRI can detect misery perfusion by comprehensively assessing blood flow data, including blood flow volume, pulsation, and collateral flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The datasets during and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Powers WJ (1991) Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 29:231–240. https://doi.org/10.1002/ana.410290302

    Article  PubMed  CAS  Google Scholar 

  2. Frackowiak RS, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4:727–736. https://doi.org/10.1097/00004728-198012000-00001

    Article  PubMed  CAS  Google Scholar 

  3. Kuroda S, Kamiyama H, Abe H, Houkin K, Isobe M, Mitsumori K (1993) Acetazolamide test in detecting reduced cerebral perfusion reserve and predicting long-term prognosis in patients with internal carotid artery occlusion. Neurosurgery 32:912–918; discussion 918-919. https://doi.org/10.1227/00006123-199306000-00005

    Article  PubMed  CAS  Google Scholar 

  4. Iida H, Itoh H, Nakazawa M, Hatazawa J, Nishimura H, Onishi Y, Uemura K (1994) Quantitative mapping of regional cerebral blood flow using iodine-123-IMP and SPECT. J Nucl Med 35:2019–2030

    PubMed  CAS  Google Scholar 

  5. Ogasawara K, Ogawa A, Yoshimoto T (2002) Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion: a xenon-133 single-photon emission computed tomography study. Stroke 33:1857–1862. https://doi.org/10.1161/01.str.0000019511.81583.a8

    Article  PubMed  Google Scholar 

  6. Kuroda S, Houkin K, Kamiyama H, Mitsumori K, Iwasaki Y, Abe H (2001) Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: can acetazolamide test predict it? Stroke 32:2110–2116. https://doi.org/10.1161/hs0901.095692

    Article  PubMed  CAS  Google Scholar 

  7. Mugikura S, Fujimura M, Takahashi S, Takase K (2017) Further implications of off-label use of acetazolamide in the management of moyamoya disease in Japan. Radiology 284:301–303. https://doi.org/10.1148/radiol.2017170252

    Article  PubMed  Google Scholar 

  8. Mugikura S, Fujimura M, Takahashi S (2016) Implications of off-label use of acetazolamide in the management of moyamoya disease in Japan. Radiology 279:652–653. https://doi.org/10.1148/radiol.2016152305

    Article  PubMed  Google Scholar 

  9. Hirooka R, Ogasawara K, Inoue T, Fujiwara S, Sasaki M, Chida K, Ishigaki D, Kobayashi M, Nishimoto H, Otawara Y, Tsushima E, Ogawa A (2009) Simple assessment of cerebral hemodynamics using single-slab 3D time-of-flight MR angiography in patients with cervical internal carotid artery steno-occlusive diseases: comparison with quantitative perfusion single-photon emission CT. AJNR Am J Neuroradiol 30:559–563. https://doi.org/10.3174/ajnr.A1389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wardlaw JM, Dennis MS, Merrick MV, Warlow CP (2002) Relationship between absolute mean cerebral transit time and absolute mean flow velocity on transcranial Doppler ultrasound after ischemic stroke. J Neuroimaging 12:104–111. https://doi.org/10.1111/j.1552-6569.2002.tb00105.x

    Article  PubMed  Google Scholar 

  11. Naylor AR, Merrick MV, Slattery JM, Notghi A, Ferrington CM, Miller JD (1991) Parametric imaging of cerebral vascular reserve. 2. Reproducibility, response to CO2 and correlation with middle cerebral artery velocities. Eur J Nucl Med 18:259–264. https://doi.org/10.1007/BF00186650

    Article  PubMed  CAS  Google Scholar 

  12. Kim JH, Lee SJ, Shin T, Kang KH, Choi PY, Kim JH, Gong JC, Choi NC, Lim BH (2000) Correlative assessment of hemodynamic parameters obtained with T2*-weighted perfusion MR imaging and SPECT in symptomatic carotid artery occlusion. AJNR Am J Neuroradiol 21:1450–1456

    PubMed  CAS  Google Scholar 

  13. de Zwart JA, Ledden PJ, van Gelderen P, Bodurka J, Chu R, Duyn JH (2004) Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magn Reson Med 51:22–26. https://doi.org/10.1002/mrm.10678

    Article  PubMed  Google Scholar 

  14. Bernstein MA, Huston J 3rd, Lin C, Gibbs GF, Felmlee JP (2001) High-resolution intracranial and cervical MRA at 3.0T: technical considerations and initial experience. Magn Reson Med 46:955–962. https://doi.org/10.1002/mrm.1282

    Article  PubMed  CAS  Google Scholar 

  15. Wetzel S, Meckel S, Frydrychowicz A, Bonati L, Radue EW, Scheffler K, Hennig J, Markl M (2007) In vivo assessment and visualization of intracranial arterial hemodynamics with flow-sensitized 4D MR imaging at 3T. AJNR Am J Neuroradiol 28:433–438

    PubMed  CAS  Google Scholar 

  16. Bammer R, Hope TA, Aksoy M, Alley MT (2007) Time-resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magn Reson Med 57:127–140. https://doi.org/10.1002/mrm.21109

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sekine T, Takagi R, Amano Y, Murai Y, Orita E, Fukushima Y, Matsumura Y, Kumita SI (2018) 4D flow MR imaging of ophthalmic artery flow in patients with internal carotid artery stenosis. Magn Reson Med Sci 17:13–20. https://doi.org/10.2463/mrms.mp.2016-0074

    Article  PubMed  Google Scholar 

  18. Orita E, Murai Y, Sekine T, Takagi R, Amano Y, Ando T, Iwata K, Obara M, Kumita S (2019) Four-dimensional flow MRI analysis of cerebral blood flow before and after high-flow extracranial-intracranial bypass surgery with internal carotid artery ligation. Neurosurgery 85:58–64. https://doi.org/10.1093/neuros/nyy192

    Article  PubMed  Google Scholar 

  19. Sekine T, Takagi R, Amano Y, Murai Y, Orita E, Matsumura Y, Kumita S (2016) 4D flow MRI assessment of extracranial-intracranial bypass: qualitative and quantitative evaluation of the hemodynamics. Neuroradiology 58:237–244. https://doi.org/10.1007/s00234-015-1626-1

    Article  PubMed  Google Scholar 

  20. Sekine T, Amano Y, Takagi R, Matsumura Y, Murai Y, Kumita S (2014) Feasibility of 4D flow MR imaging of the brain with either Cartesian y-z radial sampling or k-t SENSE: comparison with 4D flow MR imaging using SENSE. Magn Reson Med Sci 13:15–24. https://doi.org/10.2463/mrms.2013-0008

    Article  PubMed  Google Scholar 

  21. Hope TA, Hope MD, Purcell DD, von Morze C, Vigneron DB, Alley MT, Dillon WP (2010) Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow. Magn Reson Imaging 28:41–46. https://doi.org/10.1016/j.mri.2009.05.042

    Article  PubMed  Google Scholar 

  22. Markl M, Chan FP, Alley MT, Wedding KL, Draney MT, Elkins CJ, Parker DW, Wicker R, Taylor CA, Herfkens RJ, Pelc NJ (2003) Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging 17:499–506. https://doi.org/10.1002/jmri.10272

    Article  PubMed  Google Scholar 

  23. Wahlin A, Ambarki K, Birgander R, Wieben O, Johnson KM, Malm J, Eklund A (2013) Measuring pulsatile flow in cerebral arteries using 4D phase-contrast MR imaging. AJNR Am J Neuroradiol 34:1740–1745. https://doi.org/10.3174/ajnr.A3442

    Article  PubMed  CAS  Google Scholar 

  24. Gosling RG (1974) Continuous wave ultrasound as an alternative and complement to X-rays in vascular examinations. Cardiovasc Appl Ultrasound:266–282

  25. Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC (2008) The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia. Neuroradiology 50:491–497. https://doi.org/10.1007/s00234-008-0374-x

    Article  PubMed  Google Scholar 

  26. Wahlin A, Ambarki K, Hauksson J, Birgander R, Malm J, Eklund A (2012) Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: repeatability and physiological interactions. J Magn Reson Imaging 35:1055–1062. https://doi.org/10.1002/jmri.23527

    Article  PubMed  Google Scholar 

  27. Hendrikse J, Hartkamp MJ, Hillen B, Mali WP, van der Grond J (2001) Collateral ability of the circle of Willis in patients with unilateral internal carotid artery occlusion: border zone infarcts and clinical symptoms. Stroke 32:2768–2773. https://doi.org/10.1161/hs1201.099892

    Article  PubMed  CAS  Google Scholar 

  28. Schneider PA, Rossman ME, Bernstein EF, Torem S, Ringelstein EB, Otis SM (1988) Effect of internal carotid artery occlusion on intracranial hemodynamics. Transcranial Doppler evaluation and clinical correlation. Stroke 19:589–593. https://doi.org/10.1161/01.str.19.5.589

    Article  PubMed  CAS  Google Scholar 

  29. Wu C, Schnell S, Vakil P, Honarmand AR, Ansari SA, Carr J, Markl M, Prabhakaran S (2017) In vivo assessment of the impact of regional intracranial atherosclerotic lesions on brain arterial 3D hemodynamics. AJNR Am J Neuroradiol 38:515–522. https://doi.org/10.3174/ajnr.A5051

    Article  PubMed  CAS  Google Scholar 

  30. Wahlin A, Ambarki K, Birgander R, Alperin N, Malm J, Eklund A (2010) Assessment of craniospinal pressure-volume indices. AJNR Am J Neuroradiol 31:1645–1650. https://doi.org/10.3174/ajnr.A2166

    Article  PubMed  CAS  Google Scholar 

  31. Wu C, Honarmand AR, Schnell S, Kuhn R, Schoeneman SE, Ansari SA, Carr J, Markl M, Shaibani A (2016) Age-related changes of normal cerebral and cardiac blood flow in children and adults aged 7 months to 61 years. J Am Heart Assoc 5:e002657. https://doi.org/10.1161/JAHA.115.002657

    Article  PubMed  PubMed Central  Google Scholar 

  32. (1991) MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. European Carotid Surgery Trialists’ Collaborative Group. Lancet 337:1235–1243

  33. Sato K, Yamada M, Kuroda H, Yamamoto D, Asano Y, Inoue Y, Fujii K, Kumabe T (2016) Time-of-flight MR angiography for detection of cerebral hyperperfusion syndrome after superficial temporal artery-middle cerebral artery anastomosis in moyamoya disease. AJNR Am J Neuroradiol 37:1244–1248. https://doi.org/10.3174/ajnr.A4715

    Article  PubMed  CAS  Google Scholar 

  34. Kataoka H, Miyamoto S, Ogasawara K, Iihara K, Takahashi JC, Nakagawara J, Inoue T, Mori E, Ogawa A, Investigators JET (2015) Results of prospective cohort study on symptomatic cerebrovascular occlusive disease showing mild hemodynamic compromise [Japanese Extracranial-Intracranial Bypass Trial (JET)-2 study]. Neurol Med Chir (Tokyo) 55:460–468. https://doi.org/10.2176/nmc.oa.2014-0424

    Article  Google Scholar 

  35. Davis WL, Blatter DD, Harnsberger HR, Parker DL (1994) Intracranial MR angiography: comparison of single-volume three-dimensional time-of-flight and multiple overlapping thin slab acquisition techniques. AJR Am J Roentgenol 163:915–920. https://doi.org/10.2214/ajr.163.4.8092035

    Article  PubMed  CAS  Google Scholar 

  36. Wen B, Tian S, Cheng J, Li Y, Zhang H, Xue K, Zhang Z, Fan Y, Wu B (2019) Test-retest multisite reproducibility of neurovascular 4D flow MRI. J Magn Reson Imaging 49:1543–1552. https://doi.org/10.1002/jmri.26564

    Article  PubMed  Google Scholar 

  37. Liebeskind DS (2003) Collateral circulation. Stroke 34:2279–2284. https://doi.org/10.1161/01.STR.0000086465.41263.06

    Article  PubMed  Google Scholar 

  38. Telman G, Kouperberg E, Nitecki S, Karram T, Schwarz HA, Sprecher E, Hoffman A, Yarnitsky D (2006) Cerebral hemodynamics in symptomatic and asymptomatic patients with severe unilateral carotid stenosis before and after carotid endarterectomy. Eur J Vasc Endovasc Surg 32:375–378. https://doi.org/10.1016/j.ejvs.2006.04.031

    Article  PubMed  CAS  Google Scholar 

  39. Soinne L, Helenius J, Tatlisumak T, Saimanen E, Salonen O, Lindsberg PJ, Kaste M (2003) Cerebral hemodynamics in asymptomatic and symptomatic patients with high-grade carotid stenosis undergoing carotid endarterectomy. Stroke 34:1655–1661. https://doi.org/10.1161/01.STR.0000075605.36068.D9

    Article  PubMed  Google Scholar 

  40. de Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, Reinhard M, Fabregas N, Pickard JD, Czosnyka M (2012) Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care 17:58–66. https://doi.org/10.1007/s12028-012-9672-6

    Article  PubMed  Google Scholar 

  41. Yamauchi H, Kudoh T, Sugimoto K, Takahashi M, Kishibe Y, Okazawa H (2004) Pattern of collaterals, type of infarcts, and haemodynamic impairment in carotid artery occlusion. J Neurol Neurosurg Psychiatry 75:1697–1701. https://doi.org/10.1136/jnnp.2004.040261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Miralles M, Dolz JL, Cotillas J, Aldoma J, Santiso MA, Gimenez A, Capdevila A, Cairols MA (1995) The role of the circle of Willis in carotid occlusion: assessment with phase contrast MR angiography and transcranial duplex. Eur J Vasc Endovasc Surg 10:424–430. https://doi.org/10.1016/s1078-5884(05)80164-9

    Article  PubMed  CAS  Google Scholar 

  43. Stankovic Z, Jung B, Collins J, Russe MF, Carr J, Euringer W, Stehlin L, Csatari Z, Strohm PC, Langer M, Markl M (2014) Reproducibility study of four-dimensional flow MRI of arterial and portal venous liver hemodynamics: influence of spatio-temporal resolution. Magn Reson Med 72:477–484. https://doi.org/10.1002/mrm.24939

    Article  PubMed  Google Scholar 

  44. Fukuyama A, Isoda H, Morita K, Mori M, Watanabe T, Ishiguro K, Komori Y, Kosugi T (2017) Influence of spatial resolution in three-dimensional cine phase contrast magnetic resonance imaging on the accuracy of hemodynamic analysis. Magn Reson Med Sci 16:311–316. https://doi.org/10.2463/mrms.mp.2016-0060

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Consent for publication

Not applicable.

Code availability

We used GTFlow software which is commercially provided by GyroTools.

Funding

This study was funded by JSPS KAKENHI (Grant Numbers 17K18160, 19K17151, 19K08186), Kurata Grants from the Hitachi Global Foundation (Grant Number 1309), research grants from the Fukuda Foundation for Medical Technology, and research grants from the Terumo Foundation for Life Sciences and Arts.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Takahiro Ando and Tetsuro Sekine; methodology: Takahiro Ando and Tetsuro Sekine; formal analysis and investigation: Takahiro Ando, Tetsuro Sekine, Erika Orita, Kotomi Iwata, and Masatoki Nakaza; writing—original draft preparation: Takahiro Ando and Tetsuro Sekine; writing—review and editing: Takahiro Ando, Tetsuro Sekine, Yasuo Murai, and Yasuo Amano; funding acquisition: Tetsuro Sekine; resources: Takahiro Ando, Sekine Tetsuro, and Yasuo Murai; supervision: Takahiro Ando, Tetsuro Sekine, Masashi Ogawa, Makoto Obara, and Shin-ichiro Kumita.

Corresponding author

Correspondence to Takahiro Ando.

Ethics declarations

Conflict of interest

The author T.S. has a research contract with PMOD Technologies LLC and with Fujifilm Corporation regarding 4D flow MRI software development.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, T., Sekine, T., Murai, Y. et al. Multiparametric flow analysis using four-dimensional flow magnetic resonance imaging can detect cerebral hemodynamic impairment in patients with internal carotid artery stenosis. Neuroradiology 62, 1421–1431 (2020). https://doi.org/10.1007/s00234-020-02464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02464-2

Keywords

Navigation