Skip to main content
Log in

Topography of the hyperintense vessel sign on fluid-attenuated inversion recovery represents cerebral hemodynamics in middle cerebral artery occlusion: a CT perfusion study

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Whether the topography of fluid-attenuated inversion recovery hyperintense vessel sign (FHVs) can serve as a measure of cerebral hemodynamic stress remains unclear. We hypothesized that FHVs topography represents different cerebral hemodynamic status, as assessed by CT perfusion (CTP).

Methods

We retrospectively reviewed 75 patients with acute middle cerebral artery (MCA) occlusion who underwent MR imaging and CTP. The FHVs topography included FHVs inside the diffusion-weighted imaging (DWI) lesion (FHVs in-group), FHVs outside the DWI lesion (FHVs out-group), and FHVs distributed inside and outside the DWI lesion (FHVs all-group). FHVs scores were assessed by the Alberta stroke program early computed tomography score (ASPECT) territories. Cerebral hemodynamic status was evaluated by relative (r) CTP parameters. Cerebral hemodynamic status was analyzed with respect to different FHVs topographies and FHVs scores.

Results

Hemodynamic impairment was present in all patients, with the following mean rCTP parameters: rCBF, 0.77 ± 0.23; rCBV, 1.06 ± 0.32; and rMTT, 1.52 ± 0.60. Comparison of the rCTP parameters among the three groups, rCBF and rCBV (rCBF, P < 0.001; rCBV, P < 0.001) in the FHVs out-group and the FHVs all-group (rCBF, P = 0.001; rCBV, P < 0.001), were significantly higher than that in the FHVs in-group. Similarly, CTA collateral grade in the FHVs in-group was significantly lower than those in the FHVs out-group and FHVs all-group (P < 0.001). No significant difference was found in rCTP parameters between different FHVs scores.

Conclusion

The different FHVs topographies represented different cerebral hemodynamic status. FHVs topography may serve as a surrogate for patient selection for reperfusion therapy whenever perfusion data are unavailable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shuaib A, Butcher K, Mohammad AA, Saqqur M, Liebeskind DS (2011) Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol 10:909–921

    Article  PubMed  Google Scholar 

  2. Liebeskind DS (2003) Collateral circulation. Stroke 34:2279–2284

    Article  PubMed  Google Scholar 

  3. Menon BK, d'Esterre CD, Qazi EM, Almekhlafi M, Hahn L, Demchuk AM, Goyal M (2015) Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 275:510–520

    Article  PubMed  Google Scholar 

  4. McVerry F, Liebeskind DS, Muir KW (2012) Systematic review of methods for assessing leptomeningeal collateral flow. AJNR Am J Neuroradiol 33:576–582

    Article  CAS  PubMed  Google Scholar 

  5. Kamran S, Bates V, Bakshi R, Wright P, Kinkel W, Miletich R (2000) Significance of hyperintense vessels on FLAIR MRI in acute stroke. Neurology 55:265–269

    Article  CAS  PubMed  Google Scholar 

  6. Yoshioka K, Ishibashi S, Shiraishi A, Yokota T, Mizusawa H (2013) Distal hyperintense vessels on FLAIR images predict large-artery stenosis in patients with transient ischemic attack. Neuroradiology 55:165–169

    Article  PubMed  Google Scholar 

  7. Huang X, Liu W, Zhu W, Ni G, Sun W, Ma M, Zhou Z, Wang Q, Xu G, Liu X (2012) Distal hyperintense vessels on FLAIR: a prognostic indicator of acute ischemic stroke. Eur Neurol 68:214–220

    Article  PubMed  Google Scholar 

  8. Sanossian N, Saver JL, Alger JR, Kim D, Duckwiler GR, Jahan R, Vinuela F, Ovbiagele B, Liebeskind DS (2009) Angiography reveals that fluid-attenuated inversion recovery vascular hyperintensities are due to slow flow, not thrombus. AJNR Am J Neuroradiol 30:564–568

    Article  CAS  PubMed  Google Scholar 

  9. Schellinger PD, Chalela JA, Kang DW, Latour LL, Warach S (2005) Diagnostic and prognostic value of early MR imaging vessel signs in hyperacute stroke patients imaged <3 hours and treated with recombinant tissue plasminogen activator. AJNR Am J Neuroradiol 26:618–624

    PubMed  Google Scholar 

  10. Liu W, Xu G, Yue X, Wang X, Ma M, Zhang R, Wang H, Zhou C, Liu X (2011) Hyperintense vessels on FLAIR: a useful non-invasive method for assessing intracerebral collaterals. Eur J Radiol 80:786–791

    Article  PubMed  Google Scholar 

  11. Hohenhaus M, Schmidt WU, Brunecker P, Xu C, Hotter B, Rozanski M, Fiebach JB, Jungehulsing GJ (2012) FLAIR vascular hyperintensities in acute ICA and MCA infarction: a marker for mismatch and stroke severity? Cerebrovasc Dis 34:63–69

    Article  CAS  PubMed  Google Scholar 

  12. Nam KW, Kim CK, Kim TJ, Oh K, Han MK, Ko SB, Yoon BW (2018) FLAIR vascular hyperintensities predict early ischemic recurrence in TIA. Neurology 90:e738–e744

    Article  PubMed  Google Scholar 

  13. Kufner A, Galinovic I, Ambrosi V, Nolte CH, Endres M, Fiebach JB, Ebinger M (2015) Hyperintense vessels on FLAIR: hemodynamic correlates and response to thrombolysis. AJNR Am J Neuroradiol 36:1426–1430

    Article  CAS  PubMed  Google Scholar 

  14. Mahdjoub E, Turc G, Legrand L, Benzakoun J, Edjlali M, Seners P, Charron S, Ben Hassen W, Naggara O, Meder JF, Mas JL, Baron JC, Oppenheim C (2018) Do fluid-attenuated inversion recovery vascular hyperintensities represent good collaterals before reperfusion therapy? AJNR Am J Neuroradiol 39:77–83

    Article  CAS  PubMed  Google Scholar 

  15. Sakuta K, Saji N, Aoki J, Sakamoto Y, Shibazaki K, Iguchi Y, Kimura K (2016) Decrease of hyperintense vessels on fluid-attenuated inversion recovery predicts good outcome in t-PA patients. Cerebrovasc Dis 41:211–218

    Article  CAS  PubMed  Google Scholar 

  16. Liu D, Scalzo F, Rao NM, Hinman JD, Kim D, Ali LK, Saver JL, Sun W, Dai Q, Liu X, Liebeskind DS (2016) Fluid-attenuated inversion recovery vascular hyperintensity topography, novel imaging marker for revascularization in middle cerebral artery occlusion. Stroke 47:2763–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perez de la Ossa N, Hernandez-Perez M, Domenech S, Cuadras P, Massuet A, Millan M, Gomis M, Lopez-Cancio E, Dorado L, Davalos A (2012) Hyperintensity of distal vessels on FLAIR is associated with slow progression of the infarction in acute ischemic stroke. Cerebrovasc Dis 34:376–384

    Article  CAS  PubMed  Google Scholar 

  18. Legrand L, Tisserand M, Turc G, Naggara O, Edjlali M, Mellerio C, Mas JL, Meder JF, Baron JC, Oppenheim C (2015) Do FLAIR vascular hyperintensities beyond the DWI lesion represent the ischemic penumbra? AJNR Am J Neuroradiol 36:269–274

    Article  CAS  PubMed  Google Scholar 

  19. Kameda K, Uno J, Otsuji R, Ren N, Nagaoka S, Maeda K, Ikai Y, Gi H (2018) Optimal thresholds for ischemic penumbra predicted by computed tomography perfusion in patients with acute ischemic stroke treated with mechanical thrombectomy. J Neurointerv Surg 10:279–284

    Article  PubMed  Google Scholar 

  20. Arenillas JF, Cortijo E, Garcia-Bermejo P, Levy EI, Jahan R, Goyal M, Saver JL, Albers GW (2017) Relative cerebral blood volume is associated with collateral status and infarct growth in stroke patients in SWIFT PRIME. J Cereb Blood Flow Metab 38:1839–1847

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tan IY, Demchuk AM, Hopyan J, Zhang L, Gladstone D, Wong K, Martin M, Symons SP, Fox AJ, Aviv RI (2009) CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol 30:525–531

    Article  CAS  PubMed  Google Scholar 

  22. Vagal A, Aviv R, Sucharew H, Reddy M, Hou Q, Michel P, Jovin T, Tomsick T, Wintermark M, Khatri P (2018) Collateral clock is more important than time clock for tissue fate. Stroke 49:2102–2107

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wolf R (2001) Intraarterial signal on fluid-attenuated inversion recovery images: a measure of hemodynamic stress? AJNR Am J Neuroradiol 22:1015–1016

    CAS  PubMed  Google Scholar 

  24. Liebeskind DS (2005) Location, location, location: angiography discerns early MR imaging vessel signs due to proximal arterial occlusion and distal collateral flow. AJNR Am J Neuroradiol 26:2432–2434

    PubMed  Google Scholar 

  25. Haussen DC, Koch S, Saraf-Lavi E, Shang T, Dharmadhikari S, Yavagal DR (2013) FLAIR distal hyperintense vessels as a marker of perfusion-diffusion mismatch in acute stroke. J Neuroimaging 23:397–400

    Article  PubMed  Google Scholar 

  26. Jickling GC, Liu D, Stamova B, Ander BP, Zhan X, Lu A, Sharp FR (2014) Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab 34:185–199

    Article  CAS  PubMed  Google Scholar 

  27. Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, Lee KH, Liebeskind DS (2011) Collateral flow averts hemorrhagic transformation after endovascular therapy for acute ischemic stroke. Stroke 42:2235–2239

    Article  PubMed  Google Scholar 

  28. Nave AH, Kufner A, Bücke P, Siebert E, Kliesch S, Grittner U, Bӓzner H, Liebig T, Endres M, Fiebach JB, Nolte CH, Ebinger M, Henkes H (2018) Hyperintense vessels, collateralization, and functional outcome in patients with stroke receiving endovascular treatment. Stroke 49:675–681

    Article  PubMed  Google Scholar 

  29. Liebeskind DS, Kim D, Starkman S, Changizi K, Ohanian AG, Jahan R, Vinuela F (2010) Collateral failure? Late mechanical thrombectomy after failed intravenous thrombolysis. J Neuroimaging 20:78–82

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ahn SJ, Suh SH, Lee KY, Kim JH, Seo KD, Lee S (2015) Hyperintense vessels on T2-PROPELLER-FLAIR in patients with acute MCA stroke: prediction of arterial stenosis and perfusion abnormality. AJNR Am J Neuroradiol 36:2042–2047

    Article  CAS  PubMed  Google Scholar 

  31. Ahn SJ, Lee KY, Ahn SS, Hwal S, Kim B, Lee SK (2016) Can FLAIR hyperintense vessel (FHV) signs be influenced by varying MR parameters and flow velocities? A flow phantom analysis. Acta Radiol 57:580–586

    Article  PubMed  Google Scholar 

  32. Lee SH, Seo KD, Kim JH, Suh SH, Ahn SJ, Lee KY (2016) Correlation between hyperintense vessels on FLAIR imaging and arterial circulation time on cerebral angiography. Magn Reson Med Sci 15:105–110

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant no. 81701061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianjun Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from the patients and their families.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Shi, X., Yang, Q. et al. Topography of the hyperintense vessel sign on fluid-attenuated inversion recovery represents cerebral hemodynamics in middle cerebral artery occlusion: a CT perfusion study. Neuroradiology 61, 1123–1130 (2019). https://doi.org/10.1007/s00234-019-02231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-019-02231-y

Keywords

Navigation