Skip to main content

Advertisement

Log in

Gender, apolipoprotein E genotype, and mesial temporal atrophy: 2-year follow-up in patients with stable mild cognitive impairment and with progression from mild cognitive impairment to Alzheimer’s disease

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

This study aimed to examine the relationship between gender, apolipoprotein E (APOE) genotype, and mesial temporal atrophy in mild cognitive impairment (MCI) with and without progression to Alzheimer’s disease (AD).

Methods

We evaluated 236 MCI patients with (n = 121) and without (n = 115) AD progression. Longitudinal MRI-based hippocampal volumes (HV) and entorhinal cortex (ERC) thickness were obtained. The Clinical Dementia Rating Sum of Boxes (CDR-SB) score was used to assess disease severity.

Results

We found a significant effect of APOE, gender, and clinical course (stable MCI versus MCI-AD progression) on HV. There was a significant effect of clinical course and APOE, but not gender, on ERC. Baseline HV and APOE4 status predicted MCI-AD progression in women. Baseline ERC and APOE4 status predicted MCI-AD progression in men. There were significant differences in CDR-SB scores between patients with and without MCI-AD progression, but not between males and females, or APOE4 carriers and non-carriers.

Conclusions

HV, but not ERC, is strongly influenced by gender in MCI. The effects of gender and APOE4 on neuroimaging biomarkers have potentially important implications in the prediction of MCI-AD progression and should be taken into account in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194

    Article  CAS  PubMed  Google Scholar 

  2. Ganguli M, Dodge HH, Shen C, DeKosky ST (2004) Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology 63:115–121

    Article  PubMed  Google Scholar 

  3. Devanand DP, Pradhaban G, Liu X et al (2007) Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology 68:828–836

    Article  CAS  PubMed  Google Scholar 

  4. Fan Y, Batmanghelich N, Clark CM, Davatzikos C (2008) Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39:1731–1743

    Article  PubMed  Google Scholar 

  5. Fennema-Notestine C, Hagler DJ Jr, McEvoy LK et al (2009) Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Hum Brain Mapp 30:3238–3253

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jack CR Jr, Wiste HJ, Vemuri P et al (2010) Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain 133:3336–3348

    Article  PubMed  PubMed Central  Google Scholar 

  7. Karas G, Sluimer J, Goekoop R et al (2008) Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR Am J Neuroradiol 29:944–949

    Article  CAS  PubMed  Google Scholar 

  8. Jack CR Jr, Vemuri P, Wiste HJ et al (2011) Evidence for ordering of Alzheimer disease biomarkers. Arch Neurol 68:1526–1535

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pennanen C, Kivipelto M, Tuomainen S et al (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 25:303–310

    Article  PubMed  Google Scholar 

  10. Tapiola T, Pennanen C, Tapiola M et al (2008) MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow-up study. Neurobiol Aging 29:31–38

    Article  PubMed  Google Scholar 

  11. Risacher SL, Saykin AJ, West JD et al (2009) Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 6:347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Velayudhan L, Proitsi P, Westman E et al (2013) Entorhinal cortex thickness predicts cognitive decline in Alzheimer’s disease. J Alzheimers Dis 33:755–766

    CAS  PubMed  Google Scholar 

  13. Ewers M, Walsh C, Trojanowski JQ et al (2012) Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol Aging 33:1203–1214

    Article  CAS  PubMed  Google Scholar 

  14. Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10:241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahley RW, Huang Y (2006) Apolipoprotein (apo) E4 and Alzheimer’s disease: unique conformational and biophysical properties of apoE4 can modulate neuropathology. Acta Neurol Scand Suppl 185:8–14

    Article  CAS  PubMed  Google Scholar 

  16. Mahley RW, Weisgraber KH, Huang Y (2006) Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci U S A 103:5644–5651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tiraboschi P, Hansen LA, Masliah E, Alford M, Thal LJ, Corey-Bloom J (2004) Impact of APOE genotype on neuropathologic and neurochemical markers of Alzheimer disease. Neurology 62:1977–1983

    Article  CAS  PubMed  Google Scholar 

  18. Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. den Heijer T, Oudkerk M, Launer LJ, van Duijn CM, Hofman A, Breteler MM (2002) Hippocampal, amygdalar, and global brain atrophy in different apolipoprotein E genotypes. Neurology 59:746–748

    Article  Google Scholar 

  20. Moffat SD, Szekely CA, Zonderman AB, Kabani NJ, Resnick SM (2000) Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype. Neurology 55:134–136

    Article  CAS  PubMed  Google Scholar 

  21. Spampinato MV, Rumboldt Z, Hosker RJ, Mintzer JE (2011) Apolipoprotein E and gray matter volume loss in patients with mild cognitive impairment and Alzheimer disease. Radiology 258:843–852

    Article  PubMed  Google Scholar 

  22. Burggren AC, Zeineh MM, Ekstrom AD et al (2008) Reduced cortical thickness in hippocampal subregions among cognitively normal apolipoprotein E e4 carriers. Neuroimage 41:1177–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hostage CA, Choudhury KR, Murali Doraiswamy P, Petrella JR, Alzheimer’s Disease Neuroimaging I (2014) Mapping the effect of the apolipoprotein E genotype on 4-year atrophy rates in an Alzheimer disease-related brain network. Radiology 271:211–219

    Article  PubMed  Google Scholar 

  24. Carter CL, Resnick EM, Mallampalli M, Kalbarczyk A (2012) Sex and gender differences in Alzheimer’s disease: recommendations for future research. J Womens Health (Larchmt) 21:1018–1023

    Article  Google Scholar 

  25. Apostolova LG, Dinov ID, Dutton RA et al (2006) 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer’s disease. Brain 129:2867–2873

    Article  PubMed  Google Scholar 

  26. Ballmaier M, O’Brien JT, Burton EJ et al (2004) Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer’s disease using cortical pattern matching: diagnosis and gender effects. Neuroimage 23:325–335

    Article  PubMed  Google Scholar 

  27. Callen DJ, Black SE, Caldwell CB, Grady CL (2004) The influence of sex on limbic volume and perfusion in AD. Neurobiol Aging 25:761–770

    Article  PubMed  Google Scholar 

  28. Liu Y, Paajanen T, Westman E et al (2010) APOE epsilon2 allele is associated with larger regional cortical thicknesses and volumes. Dement Geriatr Cogn Disord 30:229–237

    PubMed  Google Scholar 

  29. Hua X, Hibar DP, Lee S et al (2010) Sex and age differences in atrophic rates: an ADNI study with n=1368 MRI scans. Neurobiol Aging 31:1463–1480

    Article  PubMed  PubMed Central  Google Scholar 

  30. Skup M, Zhu H, Wang Y et al (2011) Sex differences in grey matter atrophy patterns among AD and aMCI patients: results from ADNI. Neuroimage 56:890–906

    Article  PubMed  PubMed Central  Google Scholar 

  31. Holland D, Desikan RS, Dale AM, McEvoy LK (2013) Higher rates of decline for women and apolipoprotein E epsilon4 carriers. AJNR Am J Neuroradiol 34:2287–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jack CR Jr (2011) Alliance for aging research AD biomarkers work group: structural MRI. Neurobiol Aging 32(Suppl 1):S48–57

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fleisher A, Grundman M, Jack CR Jr et al (2005) Sex, apolipoprotein E epsilon 4 status, and hippocampal volume in mild cognitive impairment. Arch Neurol 62:953–957

    Article  PubMed  Google Scholar 

  34. Liu Y, Paajanen T, Westman E et al (2010) Effect of APOE epsilon4 allele on cortical thicknesses and volumes: the AddNeuroMed study. J Alzheimers Dis 21:947–966

    CAS  PubMed  Google Scholar 

  35. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease., pp 939–944

    Google Scholar 

  36. Jack CR Jr, Bernstein MA, Fox NC et al (2008) The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685–691

    Article  PubMed  PubMed Central  Google Scholar 

  37. ADNI (2008) MRI protocols. http://adni.loni.usc.edu/methods/documents/mri-protocols/.2016

  38. McDonald CR, McEvoy LK, Gharapetian L et al (2009) Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 73:457–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20:70–80

    Article  CAS  PubMed  Google Scholar 

  40. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355

    Article  CAS  PubMed  Google Scholar 

  41. Han X, Jovicich J, Salat D et al (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32:180–194

    Article  PubMed  Google Scholar 

  42. Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61:1402–1418

    Article  PubMed  PubMed Central  Google Scholar 

  43. Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. Neuroimage 53:1181–1196

    Article  PubMed  PubMed Central  Google Scholar 

  44. Juva K, Sulkava R, Erkinjuntti T, Ylikoski R, Valvanne J, Tilvis R (1995) Usefulness of the Clinical Dementia Rating scale in screening for dementia. Int Psychogeriatr 7:17–24

    Article  CAS  PubMed  Google Scholar 

  45. Petersen R, Aisen P, Beckett L et al (2010) Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 74:201–209

    Article  PubMed  PubMed Central  Google Scholar 

  46. Saykin AJ, Shen L, Foroud TM et al (2010) Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimers Dement 6:265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. L. Erlbaum Associates, Hillsdale, N.J

  48. Lin KA, Doraiswamy PM (2014) When Mars versus Venus is not a cliche: gender differences in the neurobiology of Alzheimer’s disease. Front Neurol 5:288

    Article  PubMed  Google Scholar 

  49. Irvine K, Laws KR, Gale TM, Kondel TK (2012) Greater cognitive deterioration in women than men with Alzheimer’s disease: a meta analysis. J Clin Exp Neuropsychol 34:989–998

    Article  PubMed  Google Scholar 

  50. Damoiseaux JS, Seeley WW, Zhou J et al (2012) Gender modulates the APOE epsilon4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels. J Neurosci 32:8254–8262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lehmann DJ, Refsum H, Nurk E et al (2006) Apolipoprotein E epsilon4 and impaired episodic memory in community-dwelling elderly people: a marked sex difference. The Hordaland Health Study. J Neurol Neurosurg Psychiatry 77:902–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schuff N, Woerner N, Boreta L et al (2009) MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 132:1067–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Agosta F, Vossel KA, Miller BL et al (2009) Apolipoprotein E epsilon4 is associated with disease-specific effects on brain atrophy in Alzheimer’s disease and frontotemporal dementia. Proc Natl Acad Sci U S A 106:2018–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lehtovirta M, Laakso MP, Soininen H et al (1995) Volumes of hippocampus, amygdala and frontal lobe in Alzheimer patients with different apolipoprotein E genotypes. Neuroscience 67:65–72

    Article  CAS  PubMed  Google Scholar 

  55. Mori E, Lee K, Yasuda M et al (2002) Accelerated hippocampal atrophy in Alzheimer’s disease with apolipoprotein E epsilon4 allele. Ann Neurol 51:209–214

    Article  CAS  PubMed  Google Scholar 

  56. Manning EN, Barnes J, Cash DM et al (2014) APOE epsilon4 is associated with disproportionate progressive hippocampal atrophy in AD. PLoS One 9:e97608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yaffe K, Haan M, Byers A, Tangen C, Kuller L (2000) Estrogen use, APOE, and cognitive decline: evidence of gene-environment interaction. Neurology 54:1949–1954

    Article  CAS  PubMed  Google Scholar 

  58. Hashimoto M, Yasuda M, Tanimukai S et al (2001) Apolipoprotein E epsilon 4 and the pattern of regional brain atrophy in Alzheimer’s disease. Neurology 57:1461–1466

    Article  CAS  PubMed  Google Scholar 

  59. Pievani M, Galluzzi S, Thompson PM, Rasser PE, Bonetti M, Frisoni GB (2011) APOE4 is associated with greater atrophy of the hippocampal formation in Alzheimer’s disease. Neuroimage 55:909–919

    Article  CAS  PubMed  Google Scholar 

  60. Ungar L, Altmann A, Greicius MD (2014) Apolipoprotein E, gender, and Alzheimer’s disease: an overlooked, but potent and promising interaction. Brain Imaging Behav 8:262–273

    Article  PubMed  PubMed Central  Google Scholar 

  61. Corder EH, Ghebremedhin E, Taylor MG, Thal DR, Ohm TG, Braak H (2004) The biphasic relationship between regional brain senile plaque and neurofibrillary tangle distributions: modification by age, sex, and APOE polymorphism. Ann N Y Acad Sci 1019:24–28

    Article  CAS  PubMed  Google Scholar 

  62. Ghebremedhin E, Schultz C, Thal DR et al (2001) Gender and age modify the association between APOE and AD-related neuropathology. Neurology 56:1696–1701

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Data collection and sharing for this project were funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. V. Spampinato.

Ethics declarations

We declare that all human and animal studies have been approved by the Medical University of South Carolina Institutional Review Board and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Appendix 1

Appendix 1

ADNI study protocol summary

Enrolled subjects were between 55 and 90 (inclusive) years of age, had a study partner able to provide an independent evaluation of functioning, and spoke either English or Spanish. All subjects were willing and able to undergo all test procedures including neuroimaging and agreed to longitudinal follow up. Between 20 and 50 % must have been willing to undergo two lumbar punctures, spaced 1 year apart. Specific psychoactive medications were excluded. General inclusion/exclusion criteria for the MCI subjects enrolled in the ADNI 1 study were as follows:

MCI subjects

MMSE scores between 24 and 30 (inclusive), a memory complaint, have objective memory loss measured by education-adjusted scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence of significant levels of impairment in cognitive domains other than memory, essentially preserved activities of daily living, and an absence of dementia.

All subjects underwent clinical/cognitive assessments and 1.5 T structural MRI at specified intervals (6 or 12 months) for 2–3 years. Approximately 50 % of the subjects also had FDG PET scans at the same time intervals. MCI subjects at high risk for conversion to AD (n = 400) were studied at 0, 6, 12, 18, 24, and 36 months. All MRI and PET scans were rapidly assessed for quality so that subjects may be rescanned if necessary. All clinical data were collected, monitored, and stored by the Coordinating Center at the ADCS. University of Pennsylvania collected biomarker samples. All raw and processed image data were archived at LONI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spampinato, M.V., Langdon, B.R., Patrick, K.E. et al. Gender, apolipoprotein E genotype, and mesial temporal atrophy: 2-year follow-up in patients with stable mild cognitive impairment and with progression from mild cognitive impairment to Alzheimer’s disease. Neuroradiology 58, 1143–1151 (2016). https://doi.org/10.1007/s00234-016-1740-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-016-1740-8

Keywords

Navigation