Skip to main content
Log in

Deficiency in Sperm–Egg Protein Interaction as a Major Cause of Fertilization Failure

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Complete elucidation of fertilization process at molecular level is one of the unresolved challenges in sexual reproduction studies, and understanding the molecular mechanism is crucial in overcoming difficulties in infertility and unsuccessful in vitro fertilization. Sperm–oocyte interaction is one of the most remarkable events in fertilization process, and deficiency in protein–protein interactions which mediate this interaction is a major cause of unexplained infertility. Due to detection of how the various defects of sperm–oocyte interaction can affect fertilization failure, different experimental methods have been applied. This review summarizes the current understanding of sperm–egg interaction mechanism during fertilization and also accumulates the different types of sperm–egg interaction abnormalities and their association with infertility. Several detection approaches regarding sperm–egg protein interactions and the associated defects are reviewed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PPI:

Protein–protein interaction

−/− :

Deletion gene in knockout genome

IVF:

In vitro fertilization

ZP:

Zona pellucida

AR:

Acrosome reaction

ART:

Assisted reproductive technology

ZPIAR:

ZP-induced AR

2D:

Two-dimension

TMEM190:

Transmembrane protein 190

SPESP1:

Sperm equatorial segment protein 1

SPACA:

Sperm acrosome-associated proteins

SAMP:

Sperm acrosomal membrane-associated protein

SLLP1:

Sperm lysosomal-like protein 1

ADAMs:

Disintegrin and metalloproteinase domain

IgSF:

Immunoglobulin superfamily

Itg:

Integrin

Y2H:

Yeast two-hybrid

References

  • Abou-haila A, Tulsiani DR (2009) Signal transduction pathways that regulate sperm capacitation and the acrosome reaction. Arch Biochem Biophys 485(1):72–81

    Article  CAS  PubMed  Google Scholar 

  • Aitken R, Best F, Richardson D, Djahanbakhch O, Mortimer D, Templeton A et al (1982) An analysis of sperm function in cases of unexplained infertility: conventional criteria, movement characteristics, and fertilizing capacity. Fertil Steril 38(2):212–221

    Article  CAS  PubMed  Google Scholar 

  • Albertini DF (2015) What we have here is a failure to fertilize: back to basics. J Assist Reprod Genet 32(6):851–852

    Article  PubMed  PubMed Central  Google Scholar 

  • Alfieri JA, Martin AD, Takeda J, Kondoh G, Myles DG, Primakoff P (2003) Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins. J Cell Sci 116(11):2149–2155

    Article  CAS  PubMed  Google Scholar 

  • Amdani SN, Yeste M, Jones C, Coward K (2015) Sperm factors and oocyte activation: current controversies and considerations. Biol Reprod 93(2):50

    Article  PubMed  Google Scholar 

  • Anifandis G, Messini C, Dafopoulos K, Sotiriou S, Messinis I (2014) Molecular and cellular mechanisms of sperm–oocyte interactions opinions relative to in vitro fertilization (IVF). Int J Mol Sci 15(7):12972–12997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anifandis G, Messini CI, Dafopoulos K, Daponte A, Messinis IE (2016) Sperm contributions to oocyte activation: more that meets the eye. J Assist Reprod Genet 33(3):313–316

    Article  PubMed  PubMed Central  Google Scholar 

  • Bader GD, Betel D, Hogue CW (2003) BIND: the biomolecular interaction network database. Nucleic Acids Res 31(1):248–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldi E, Luconi M, Bonaccorsi L, Muratori M, Forti G (2000) Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Front Biosci 5:E110–E123

    Article  CAS  PubMed  Google Scholar 

  • Barratt CL, Publicover SJ (2001) Interaction between sperm and zona pellucida in male fertility. The Lancet 358(9294):1660–1662

    Article  CAS  Google Scholar 

  • Bianchi E, Doe B, Goulding D, Wright GJ (2014) Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508(7497):483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blobel CP, Wolfsberg TG, Turck CW, Myles DG, Primakoff P, White JM (1992) A potential fusion peptide and an integrin ligand domain in a protein active in sperm–egg fusion. Nature 356(6366):248–252

    Article  CAS  PubMed  Google Scholar 

  • Brewis IA, Van Gestel RA, Gadella BM, Jones R, Publicover SJ, Roldan ER et al (2005) The spermatozoon at fertilisation: current understanding and future research directions*. Hum Fertil 8(4):241–251

    Article  CAS  Google Scholar 

  • Brümmendorf T, Lemmon V (2001) Immunoglobulin superfamily receptors: cis-interactions, intracellular adapters and alternative splicing regulate adhesion. Curr Opin Cell Biol 13(5):611–618

    Article  PubMed  Google Scholar 

  • Chua HN, Wong L (2008) Increasing the reliability of protein interactomes. Drug Discov Today 13(15):652–658

    Article  CAS  PubMed  Google Scholar 

  • Conner SJ, Lefièvre L, Kirkman-Brown J, Machado-Oliveira GS, Michelangeli F, Publicover SJ et al. (2007). Physiological and proteomic approaches to understanding human sperm function. In: The Genetics of Male Infertility. Springer, New York, pp. 77–97

    Chapter  Google Scholar 

  • Coonrod SA, Naaby-Hansen S, Shetty J, Shibahara H, Chen M, White JM et al (1999) Treatment of mouse oocytes with PI-PLC releases 70-kDa (pI 5) and 35- to 45-kDa (pI 5.5) protein clusters from the egg surface and inhibits sperm-oolemma binding and fusion. Dev Biol 207(2):334–349

    Article  CAS  PubMed  Google Scholar 

  • Desiderio UV, Zhu X, Evans JP (2010) ADAM2 interactions with mouse eggs and cell lines expressing α4/α9 (ITGA4/ITGA9) integrins: implications for integrin-based adhesion and fertilization. PloS ONE 5(10):e13744

    Article  PubMed  PubMed Central  Google Scholar 

  • Eddy E (2006) The spermatozoon. Knobil Neill’s Physiol Reprod 1:3–54

    Article  Google Scholar 

  • Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29(5):258–289

    Article  CAS  PubMed  Google Scholar 

  • Ensslin MA, Shur BD (2003) Identification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding. Cell 114(4):405–417

    Article  CAS  PubMed  Google Scholar 

  • Eto K, Huet C, Tarui T, Kupriyanov S, Liu H-Z, Puzon-McLaughlin W et al (2002) Functional classification of ADAMs based on a conserved motif for binding to integrin α9β1 Implications for sperm–egg binding and other cell interactions. J Biol Chem 277(20):17804–17810

    Article  CAS  PubMed  Google Scholar 

  • Evans JP (2012) Sperm-egg interaction. Annu Rev Physiol 74:477–502

    Article  CAS  PubMed  Google Scholar 

  • Fanaei M, Monk P, Partridge L (2011) The role of tetraspanins in fusion. Biochem Soc Trans 39(2):524

    Article  CAS  PubMed  Google Scholar 

  • Frayne J, Hall L (1999) Mammalian sperm-egg recognition: does fertilin β have a major role to play? Bioessays 21(3):183–187

    Article  CAS  PubMed  Google Scholar 

  • Fujihara Y, Murakami M, Inoue N, Satouh Y, Kaseda K, Ikawa M et al (2010) Sperm equatorial segment protein 1, SPESP1, is required for fully fertile sperm in mouse. J Cell Sci 123(9):1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Gadella B (2008) Sperm membrane physiology and relevance for fertilization. Anim Reprod Sci 107(3):229–236

    Article  CAS  PubMed  Google Scholar 

  • Gavin AC, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147

    Article  CAS  PubMed  Google Scholar 

  • Glazar AI, Evans JP (2009) IgSF8 (EWI-2) and CD9 in fertilization: evidence of distinct functions for CD9 and a CD9-associated protein in mammalian sperm-egg interaction. Reprod Fertil Dev 21(2):293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granados-Gonzalez V, Aknin-Seifer I, Touraine R-L, Chouteau J, Wolf J-P, Levy R (2008) Preliminary study on the role of the human IZUMO gene in oocyte–spermatozoa fusion failure. Fertil Steril 90(4):1246–1248

    Article  CAS  PubMed  Google Scholar 

  • Hamada A, Esteves SC, Agarwal A (2011) Unexplained male infertility: potential causes and management. Human Androl 1(1):2–16

    Article  Google Scholar 

  • Hamada A, Esteves SC, Nizza M, Agarwal A (2012) Unexplained male infertility: diagnosis and management. Int Braz J Urol 38(5):576–594

    Article  PubMed  Google Scholar 

  • Handel MA, Lessard C, Reinholdt L, Schimenti J, Eppig JJ (2006) Mutagenesis as an unbiased approach to identify novel contraceptive targets. Mol Cell Endocrinol 250(1):201–205

    Article  CAS  PubMed  Google Scholar 

  • Hao Z, Wolkowicz MJ, Shetty J, Klotz K, Bolling L, Sen B et al (2002) SAMP32, a testis-specific, isoantigenic sperm acrosomal membrane-associated protein. Biol Reprod 66(3):735–744

    Article  CAS  PubMed  Google Scholar 

  • Hayasaka S, Terada Y, Inoue N, Okabe M, Yaegashi N, Okamura K (2007) Positive expression of the immunoglobulin superfamily protein IZUMO on human sperm of severely infertile male patients. Fertil Steril 88(1):214–216

    Article  PubMed  Google Scholar 

  • Horiuchi K, Weskamp G, Lum L, Hammes H-P, Cai H, Brodie TA et al (2003) Potential role for ADAM15 in pathological neovascularization in mice. Mol Cell Biol 23(16):5614–5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotaling JM, Smith JF, Rosen M, Muller CH, Walsh TJ (2011) The relationship between isolated teratozoospermia and clinical pregnancy after in vitro fertilization with or without intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril 95(3):1141–1145

    Article  PubMed  Google Scholar 

  • Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434(7030):234–238

    Article  CAS  PubMed  Google Scholar 

  • Inoue N, Ikawa M, Okabe M (2008) Putative sperm fusion protein IZUMO and the role of ⟨i⟩ N-glycosylation. Biochem Biophys Res Commun 377(3):910–914

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98(8):4569–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungwirth A, Giwercman A, Tournaye H, Diemer T, Kopa Z, Dohle G et al (2012) European Association of Urology guidelines on Male Infertility: the 2012 update. Eur Urol 62(2):324–332

    Article  PubMed  Google Scholar 

  • Kaji K, Kudo A (2004) The mechanism of sperm–oocyte fusion in mammals. Reproduction 127(4):423–429

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Yamashita M, Nakanishi T, Park K-E, Kimura M, Kashiwabara, S.-i. et al (2006) Mouse sperm lacking ADAM1b/ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J Biol Chem 281(9):5634–5639

    Article  CAS  PubMed  Google Scholar 

  • Kovalenko OV, Yang XH, Hemler ME (2007) A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9. Mol Cell Proteom 6(11):1855–1867

    Article  CAS  Google Scholar 

  • Le Naour F, André M, Greco C, Billard M, Sordat B, Emile J-F et al (2006) Profiling of the tetraspanin web of human colon cancer cells. Mol Cell Proteom 5(5):845–857

    Article  CAS  Google Scholar 

  • Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287(5451):319–321

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Yoon SY, Malcuit C, Parys JB, Fissore RA (2010) Inositol 1, 4, 5-trisphosphate receptor 1 degradation in mouse eggs and impact on [Ca2+] i oscillations. J Cell Physiol 222(1):238–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefievre L, Conner S, Salpekar A, Olufowobi O, Ashton P, Pavlovic B et al (2004) Four zona pellucida glycoproteins are expressed in the human*. Hum Reprod 19(7):1580–1586

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Baker H (2000) Defective sperm–zona pellucida interaction: a major cause of failure of fertilization in clinical in-vitro fertilization. Hum Reprod 15(3):702–708

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Liu M, Baker H (2009) Enhancement of sperm–zona pellucida (ZP) binding capacity by activation of protein kinase A and C pathways in certain infertile men with defective sperm–ZP binding. Hum Reprod 24(1):20–27

    Article  CAS  PubMed  Google Scholar 

  • Liu DY, Baker H (2003) Disordered zona pellucida–induced acrosome reaction and failure of in vitro fertilization in patients with unexplained infertility. Fertil Steril 79(1):74–80

    Article  PubMed  Google Scholar 

  • Liu DY, Liu ML, Garrett C, Baker HG (2007) Comparison of the frequency of defective sperm–zona pellucida (ZP) binding and the ZP-induced acrosome reaction between subfertile men with normal and abnormal semen. Human Reprod 22(7):1878–1884

    Article  Google Scholar 

  • Liu Y, Misamore MJ, Snell WJ (2010) Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in a membrane block to polygamy in chlamydomonas. Development 137(9):1473–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzetti, D., Poirier, C., Zhao, M., Overbeek, P. A., Harrison, W. and Bishop, C. E. (2014). A transgenic insertion on mouse chromosome 17 inactivates a novel immunoglobulin superfamily gene potentially involved in sperm–egg fusion. Mamm Genome, 25(3), 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Misamore MJ, Gupta S, Snell WJ (2003) The Chlamydomonas Fus1 protein is present on the mating type plus fusion organelle and required for a critical membrane adhesion event during fusion with minus gametes. Mol Biol Cell 14(6):2530–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F et al (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287(5451):321–324

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Kim E, Nakanishi T, Baba T (2004) Possible function of the ADAM1a/ADAM2 Fertilin complex in the appearance of ADAM3 on the sperm surface. J Biol Chem 279(33):34957–34962

    Article  CAS  PubMed  Google Scholar 

  • Nomikos M, Swann K, Lai FA (2012) Starting a new life: sperm PLC-zeta mobilizes the Ca2 + signal that induces egg activation and embryo development. Bioessays 34(2):126–134

    Article  CAS  PubMed  Google Scholar 

  • Ola B, Afnan M, Sharif K, Papaioannou S, Hammadieh N, Barratt CL (2001) Should ICSI be the treatment of choice for all cases of in-vitro conception? Considerations of fertilization and embryo development, cost effectiveness and safety. Hum Reprod 16(12):2485–2490

    Article  CAS  PubMed  Google Scholar 

  • Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C (2010) Transient protein-protein interactions: structural, functional, and network properties. Structure 18(10):1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Primakoff P, Myles DG (2002) Penetration, adhesion, and fusion in mammalian sperm-egg interaction. Science 296(5576):2183–2185

    Article  CAS  PubMed  Google Scholar 

  • Rowe PJ, Comhaire FH (2000). WHO manual for the standardized investigation, diagnosis and management of the infertile male. Cambridge University Press, Cambridge

    Google Scholar 

  • Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf J-P, Levy S et al (2006) Reduced fertility of female mice lacking CD81. Dev Biol 290(2):351–358

    Article  CAS  PubMed  Google Scholar 

  • Sachs N, Kreft M, van den Bergh Weerman MA, Beynon AJ, Peters TA, Weening JJ et al (2006) Kidney failure in mice lacking the tetraspanin CD151. J Cell Biol 175(1):33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato, K.-i (2014) Transmembrane signal transduction in oocyte maturation and fertilization: focusing on Xenopus laevis as a model animal. Int J Mol Sci 16(1):114–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi J, Sheng J, Peng K, Wang J, Yi W, Wu H et al (2013) Expression pattern of the zona pellucida 3 (ZP3) gene during ovarian development and the location of ZP3 protein in oocytes in a natural, wild triploid crucian carp mutant, Carassius auratus var. Pingxiangnensis. Genet Mol Res 12(4):5640–5650

    Article  CAS  PubMed  Google Scholar 

  • Sigman M, Baazeem A, Zini A (2009a) Semen analysis and sperm function assays: what do they mean. Semin Reprod Med 27(2):115–123

    Article  PubMed  Google Scholar 

  • Sigman M, Lipshultz L, Howards S (2009b) Office evaluation of the subfertile male. Infertil Male 4:153–176

    Google Scholar 

  • Singson A, Hang JS, Parry JM (2008) Genes required for the common miracle of fertilization in Caenorhabditis elegans. Int J Dev Biol 52(5–6):647–656

    Article  CAS  PubMed  Google Scholar 

  • Sinowatz F, Töpfer-Petersen E, Kölle S, Palma G (2001) Functional morphology of the zona pellucida. Anat Histol Embryol 30(5):257–263

    Article  CAS  PubMed  Google Scholar 

  • Stein KK, Primakoff P, Myles D (2004) Sperm–egg fusion: events at the plasma membrane. J Cell Sci 117(26):6269–6274

    Article  CAS  PubMed  Google Scholar 

  • Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968

    Article  CAS  PubMed  Google Scholar 

  • Sun Q-Y, Nagai T (2003) Molecular mechanisms underlying pig oocyte maturation and fertilization. J Reprod Dev 49(5):347–359

    Article  CAS  PubMed  Google Scholar 

  • Sutovsky P, Manandhar G, Wu A, Oko R (2003) Interactions of sperm perinuclear theca with the oocyte: Implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc Res Tech 61(4):362–378

    Article  PubMed  Google Scholar 

  • Swain JE, Pool TB (2008) ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update 14(5):431–446

    Article  PubMed  Google Scholar 

  • Takeda Y, Kazarov AR, Butterfield CE, Hopkins BD, Benjamin LE, Kaipainen A et al (2007) Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 109(4):1524–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavalaee, M., Nasr-Esfahani, M. (2016). Expression profile of PLCζ, PAWP, and TR-KIT in association with fertilization potential, embryo development, and pregnancy outcomes in globozoospermic candidates for intra-cytoplasmic sperm injection and artificial oocyte activation. Andrology 4:850–856

    Article  CAS  PubMed  Google Scholar 

  • Tiede A, Nischan C, Schubert J, Schmidt RE (2000) Characterisation of the enzymatic complex for the first step in glycosylphosphatidylinositol biosynthesis. Int J Biochem Cell Biol 32(3):339–350

    Article  CAS  PubMed  Google Scholar 

  • Tokmakov AA, Stefanov VE, Iwasaki T, Sato K-I, Fukami Y (2014) Calcium signaling and meiotic exit at fertilization in Xenopus egg. Int J Mol Sci 15(10):18659–18676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuhiro K, Ikawa M, Benham AM, Okabe M (2012) Protein disulfide isomerase homolog PDILT is required for quality control of sperm membrane protein ADAM3 and male fertility. Proc Natl Acad Sci USA 109(10):3850–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomczuk M, Takahashi Y, Huang J, Murase S, Mistretta M, Klaffky E et al (2003) Role of multiple β1 integrins in cell adhesion to the disintegrin domains of ADAMs 2 and 3. Exp Cell Res 290(1):68–81

    Article  CAS  PubMed  Google Scholar 

  • Tournaye H, Verheyen G, Albano C, Camus M, Van Landuyt L, Devroey P et al (2002) Intracytoplasmic sperm injection versus in vitro fertilization: a randomized controlled trial and a meta-analysis of the literature. Fertil Steril 78(5):1030–1037

    Article  PubMed  Google Scholar 

  • Tulsiani DR, Abou-Haila A (2001) Mammalian sperm molecules that are potentially important in interaction with female genital tract and egg vestments. Zygote 9(01):51–69

    Article  CAS  PubMed  Google Scholar 

  • Tulsiani, D. R. and Abou-Haila, A. (2012). Biological processes that prepare mammalian spermatozoa to interact with an egg and fertilize it. Scientifica

  • van der Heijden GW, Ramos L, Baart EB, van den Berg IM, Derijck AA, van der Vlag J et al (2008) Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev Biol 8(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  • van Gestel RA, Brewis IA, Ashton PR, Brouwers JF, Gadella BM (2007) Multiple proteins present in purified porcine sperm apical plasma membranes interact with the zona pellucida of the oocyte. Mol Hum Reprod 13(7):445–454

    Article  PubMed  Google Scholar 

  • Von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S et al (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887):399–403

    Article  Google Scholar 

  • Wolkowicz MJ, Shetty J, Westbrook A, Klotz K, Jayes F, Mandal A et al (2003) Equatorial segment protein defines a discrete acrosomal subcompartment persisting throughout acrosomal biogenesis. Biol Reprod 69(3):735–745

    Article  CAS  PubMed  Google Scholar 

  • Wortzman GB, Gardner AJ, Evans JP (2006). Analysis of mammalian sperm-egg membrane interactions during in vitro fertilization cell–cell interactions. Springer, New York, pp. 89–101

    Google Scholar 

  • Xenarios I, Salwinski L, Duan XJ, Higney P, Kim S-M, Eisenberg D (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30(1):303–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagimachi R (2011) Mammalian sperm acrosome reaction: Where does it begin before fertilization? Biol Reprod 85(1):4–5

    Article  CAS  PubMed  Google Scholar 

  • Yeste M, Jones C, Amdani SN, Patel S, Coward K (2016) Oocyte activation deficiency: a role for an oocyte contribution? Hum Reprod Update 22(1):23–47

    Article  PubMed  Google Scholar 

  • Yu, Y. (2008). The identification and characterization of an inner acrosomal membrane associated protein, IAM38, responsible for secondary sperm-zona binding during fertilization

  • Ziyyat A, Rubinstein E, Monier-Gavelle F, Barraud V, Kulski O, Prenant M et al (2006) CD9 controls the formation of clusters that contain tetraspanins and the integrin α6β1, which are involved in human and mouse gamete fusion. J Cell Sci 119(3):416–424

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Universiti Teknologi Malaysia Institutional Postal Doctorate Research Grant (PDRU02E96) for the funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soudabeh Sabetian or Mohd Shahir Shamsir.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabetian, S., Shamsir, M.S. Deficiency in Sperm–Egg Protein Interaction as a Major Cause of Fertilization Failure. J Membrane Biol 250, 133–144 (2017). https://doi.org/10.1007/s00232-017-9954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-9954-1

Keywords

Navigation