Skip to main content
Log in

The Effect of Cholesterol on the Dielectric Structure of Lipid Bilayers

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Cholesterol plays an important role in regulating the properties of phospholipid bilayers and many mechanisms have been proposed to explain why cholesterol is so ubiquitous within biological membranes of animals. Here we present the results of studies on the effect of cholesterol on the electrical/dielectric properties of lipid membranes tethered to a solid substrate. These tethered bilayer lipid membranes tBLM were formed on a commercially available chemically modified gold substrate. These lipid bilayers are very robust. Very high-resolution electrical impedance spectroscopy (EIS) was used to determine the dielectric structure of the lipid bilayers and associated interfaces. The EIS data allowed the dielectric substructure of the lipid bilayers to be determined. The results showed that when cholesterol was present in the tethered membranes at a concentration of 10% (mol/mol); the thickness of the tBLMs increased and the membrane conductance decreased. However, when cholesterol was present in the tethered membrane at more than 30% (mol/mol) the effect of cholesterol was dramatically different; the membranes then became thinner and possessed a much larger electrical conductance. The EIS allowed a distinction to be made between a hydrophobic region in the center of the bilayer and another hydrophobic region further out towards the polar head region, in addition to the polar head region itself. Cholesterol was found to have the largest effect on the inner, hydrophobic region, although the outer hydrophobic region was also affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alobeedallah H, Cornell B, Coster H (2016) The effect of benzyl alcohol on the dielectric structure of lipid bilayers. J Membr Biol 249(6):833–844

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft R, Coster H, Laver D, Smith J (1983) The effects of cholesterol inclusion on the molecular organisation of bimolecular lipid membranes. Biochim Biophys Acta 730(2):231–238

    Article  CAS  Google Scholar 

  • Bradshaw RA, Stahl PD (2015). Encyclopedia of cell biology, Elsevier Science, Amsterdam

    Google Scholar 

  • Cao H, Tokutake N, Regen SL (2003) Unraveling the mystery surrounding cholesterol’s condensing effect. J Am Chem Soc 125(52):16182–16183

    Article  CAS  PubMed  Google Scholar 

  • Coster H, Smith J (1974) The molecular organization of bimolecular lipid membranes. A study of the low frequency Maxwell–Wagner impedance dispersion. Biochim Biophys Acta 373(2):151–164

    Article  CAS  PubMed  Google Scholar 

  • Coster H, Laver D (1986) The effect of benzyl alcohol and cholesterol on the acyl chain order and alkane solubility of bimolecular phosphatidylcholine membranes. Biochim Biophys Acta 861:406–412

    Article  CAS  PubMed  Google Scholar 

  • Coster H, Laver D (1986) The effect of temperature on lipid-n-alkane interactions in lipid bilayers. Biochim Biophys Acta 857(1):95–104

    Article  CAS  PubMed  Google Scholar 

  • Coster HGL, Chilcott TC, Coster ACF (1996) Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectrochem Bioenerg 40(2):79–98

    Article  CAS  Google Scholar 

  • Coster HGL (2003) The physics of cell membranes. J Biol Phys 29(4):363–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cranfield C, Carne S, Martinac B, Cornell B (2015) The assembly and use of tethered bilayer lipid membranes (tBLMs). Methods Membr Lipids 1232:45–53

    CAS  Google Scholar 

  • De Gier J, Haest CWM, Mandersloot JG, Van Deenen LLM (1970) Valinomycin-induced permeation of 86Rb+ of liposomes with varying composition through the bilayers. Biochim Biophys Acta 211(2):373–375

    Article  Google Scholar 

  • Demel R, Van Deenen L, Pethica B (1967) Monolayer interactions of phospholipids and cholesterol. Biochim Biophys Acta 135(1):11–19

    Article  CAS  Google Scholar 

  • Dynarowicz-Łątka P, Hąc-Wydro K (2004) Interactions between phosphatidylcholines and cholesterol in monolayers at the air/water interface. Colloids Surf B 37(1–2):21–25

    Article  Google Scholar 

  • Finegold LX (1992) Cholesterol in membrane models. Taylor & Francis, Milton Park

    Google Scholar 

  • Hendry BM, Urban BW, Haydon DA (1978) The blockage of the electrical conductance in a pore-containing membrane by the n-alkanes. Biochim Biophys Acta 513(1):106–116

    Article  CAS  PubMed  Google Scholar 

  • Hoiles W, Krishnamurthy V, Cranfield Charles G, Cornell B (2014) An engineered membrane to measure electroporation: effect of tethers and bioelectronic interface. Biophys J 107(6):1339–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung W-C, Lee M-T, Chen F-Y, Huang HW (2007) The condensing effect of cholesterol in lipid bilayers. Biophys J 92(11):3960–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kameyama Y, Yashiro K, Mizuno M, Takahashi K, Sakashita Y, Takenaka T, Yokota Y (1988) Physical properties of membrane lipids in rat salivary glands: involvement of cholesterol. Jpn J Oral Biol 30(6):841–847

    Article  CAS  Google Scholar 

  • Kameyama Y (2009) Structure and function of biomembranes and membrane phospholipids of rat salivary glands: properties of liposome- and plasma membrane-induced membrane fusion and consequent amylase release from isolated secretory granules. Adv Planar Lipid Bilayers Liposomes 10:135–159

    Article  CAS  Google Scholar 

  • Karolis C, Coster HGL, Chilcott TC, Barrow KD (1998) Differential effects of cholesterol and oxidised-cholesterol in egg lecithin bilayers. Biochim Biophys Acta 1368(2):247–255

    Article  CAS  PubMed  Google Scholar 

  • Leathes JB (1925) Condensing effect of cholesterol on monolayers. Lancet 208:853–856

    Article  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Biomembranes: structural organization and basic functions, 4th edn. W. H. Freeman, New York

  • Marsh D, Smith IC (1973) An interacting spin label study of the fluidizing and condensing effects of cholesterol on lecithin bilayers. Biochim Biophys Acta 298(2):133–144

    Article  CAS  PubMed  Google Scholar 

  • Oldfield E, Chapman D (1972) Dynamics of lipids in membranes: heterogeneity and the role of cholesterol. FEBS Lett 23(3):285–297

    Article  CAS  PubMed  Google Scholar 

  • Papahadjopoulos D, Cowden M, Kimelberg H (1973) Role of cholesterol in membranes effects on phospholipid–protein interactions, membrane permeability and enzymatic activity. Biochim Biophys Acta 330(1):8–26

    Article  CAS  PubMed  Google Scholar 

  • Schreier-Muccillo S, Marsh D, Dugas H, Schneider H, Smith IC (1973) A spin probe study of the influence of cholesterol on motion and orientation of phospholipids in oriented multibilayers and vesicles. Chem Phys Lipids 10(1):11–27

    Article  CAS  PubMed  Google Scholar 

  • Sepčić K, Berne S, Rebolj K, Batista U, Plemenitaš A, Šentjurc M, Maček P (2004) Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol–rich lipid domains. FEBS Lett 575(1–3):81–85

    PubMed  Google Scholar 

  • Smith JR, Coster HGL, Laver DR (1985) The dependence of the conductance of phosphatidylcholine bilayers upon the concentration and composition of the external electrolyte. Biochim Biophys Acta 812(1):181–192

    Article  CAS  Google Scholar 

  • Sprong H, van der Sluijs P, van Meer G (2001) How proteins move lipids and lipids move proteins. Nat Rev Mol Cell Biol 2(7):504–513

    Article  CAS  PubMed  Google Scholar 

  • Szabo G, Eisenman G, Ciani S (1969) The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J Membr Biol 1(1):346–382

    Article  CAS  PubMed  Google Scholar 

  • Vemuri R, Philipson K (1989) Influence of sterols and phospholipids on sarcolemmal and sarcoplasmic reticular cation transporters. J Biol Chem 264(15):8680–8685

    CAS  PubMed  Google Scholar 

  • Warren L, Glick M (1968) Membranes of animal cells. J Cell Biol 37(3):729–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeagle PL (2016) Cholesterol and related sterols: roles in membrane structure and function. The membranes of cells (Third Edition), Chap. 9. Academic Press, Boston, pp 189–218

    Google Scholar 

  • Yeagle PL (1985) Cholesterol and the cell membrane. Biochim Biophys Acta 822(3–4):267–287

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HA wishes to gratefully acknowledge the award of a University of Sydney Post Graduate Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadeel Alobeedallah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alobeedallah, H., Cornell, B. & Coster, H. The Effect of Cholesterol on the Dielectric Structure of Lipid Bilayers. J Membrane Biol 251, 153–161 (2018). https://doi.org/10.1007/s00232-017-0007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-0007-6

Keywords

Navigation