Skip to main content
Log in

The Effect of Benzyl Alcohol on the Dielectric Structure of Lipid Bilayers

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Molecularly tethered lipid bilayer membranes were constructed on a commercially available chemically modified gold substrate. This is a new and promising product that has allowed the construction of very robust lipid bilayers. Very high resolution electrical impedance spectroscopy (EIS) was used to determine the dielectric structure of the lipid bilayers and associated interfaces. The EIS data were modelled in terms of the dielectric substructure using purpose developed software. The hydrophobic region, where the lipid tails are located, was revealed by the EIS in the frequency range of (1–100) Hz and its thickness was calculated from the capacitance of this region and found to be approximately 3–4 nm. The hydrophilic region, where the polar heads are located, was revealed at higher frequencies and its thickness was estimated to be approximately 1–2 nm. The effect of the local anaesthetic benzyl alcohol (BZA) on the tethered lipid bilayers was investigated. The effect of BZA on the membrane capacitance and conductance allowed the changes in the thickness of the polar head and hydrophobic tails regions to be determined. It was found that the addition of BZA caused a significant increase in the capacitance (corresponding to a decrease in the thickness) of the hydrophobic region and an increase in the membrane electrical conductance. The EIS allowed a distinction between a hydrophobic region in the centre of the bilayer and an outer hydrophobic region. Benzyl alcohol was found to have the largest effect on the outer, hydrophobic region, although the inner hydrophobic region was also consistently affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Antony A, Chilcott T, Coster H, Leslie G (2013) In situ structural and functional characterization of reverse osmosis membranes using electrical impedance spectroscopy. J Membr Sci 425–426:89–97

    Article  CAS  Google Scholar 

  • Ashcroft RG, Coster HGL, Smith JR (1977) Local anaesthetic benzyl alcohol increases membrane thickness. Nature 269(5631):819–820

    Article  CAS  PubMed  Google Scholar 

  • Bannwarth S, Darestani M, Coster H, Wessling M (2015) Characterization of hollow fiber membranes by impedance spectroscopy. J Membr Sci 473:318–326

    Article  CAS  Google Scholar 

  • Benavente J, García JM, de la Campa JG, de Abajo J (1996) Determination of some electrical parameters for two novel aliphatic-aromatic polyamide membranes. J Membr Sci 114(1):51–57

    Article  CAS  Google Scholar 

  • Chilcott T, Chan M, Gaedt L, Nantawisarakul T, Fane A, Coster H (2002) Electrical impedance spectroscopy characterisation of conducting membranes: I. Theory. J Membr Sci 195(2):153–167

    Article  CAS  Google Scholar 

  • Cornell BA, Braach-Maksvytis VLB, King LG, Osman PDJ, Raguse B, Wieczorek L, Pace RJ (1997) A biosensor that uses ion-channel switches. Nature 387(6633):580–583

    Article  CAS  PubMed  Google Scholar 

  • Coster HGL (2003) The physics of cell membranes. J Biol Phys 29(4):363–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coster H, Laver D (1986a) The effect of temperature on lipid-n-alkane interactions in lipid bilayers. Biochim Biophys Acta 857(1):95–104

    Article  CAS  PubMed  Google Scholar 

  • Coster H, Laver D (1986b) The effect of benzyl alcohol and cholesterol on the acyl chain order and alkane solubility of bimolecular phosphatidylcholine membranes. Biochim Biophys Acta 861:406–412

    Article  CAS  Google Scholar 

  • Coster H, Smith J (1974) The molecular organization of bimolecular lipid membranes. A study of the low frequency Maxwell–Wagner impedance dispersion. Biochim Biophys Acta 373(2):151–164

    Article  CAS  Google Scholar 

  • Coster HGL, Kim KJ, Dahlan K, Smith JR, Fell CJD (1992) Characterisation of ultrafiltration membranes by impedance spectroscopy. I. Determination of the separate electrical parameters and porosity of the skin and sublayers. J Membr Sci 66(1):19–26

    Article  CAS  Google Scholar 

  • Coster HGL, Chilcott TC, Coster ACF (1996) Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectrochem Bioenerg 40(2):79–98

    Article  CAS  Google Scholar 

  • Cranfield CG, Cornell BA, Grage SL, Duckworth P, Carne S, Ulrich AS, Martinac B (2014) Transient potential gradients and impedance measures of tethered bilayer lipid membranes: pore-forming peptide insertion and the effect of electroporation. Biophys J 106(1):182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cranfield C, Carne S, Martinac B, Cornell B (2015a) The assembly and use of tethered bilayer lipid membranes (tBLMs). Methods Membr Lipids 1232:45–53

    CAS  Google Scholar 

  • Cranfield CG, Bettler T, Cornell B (2015b) Nanoscale ion sequestration to determine the polarity selectivity of ion conductance in carriers and channels. Langmuir 31(1):292–298

    Article  CAS  PubMed  Google Scholar 

  • Fettiplace R, Andrews DM, Haydon DA (1971) The thickness, composition and structure of some lipid bilayers and natural membranes. J Membr Biol 5(3):277–296

    Article  CAS  PubMed  Google Scholar 

  • Gaedt L, Chilcott T, Chan M, Nantawisarakul T, Fane A, Coster H (2002) Electrical impedance spectroscopy characterisation of conducting membranes: II. Experimental. J Membr Sci 195(2):169–180

    Article  CAS  Google Scholar 

  • Ho JS, Low JH, Sim LN, Webster RD, Rice SA, Fane AG, Coster HG (2016) In-situ monitoring of biofouling on reverse osmosis membranes: detection and mechanistic study using electrical impedance spectroscopy. J Membr Sci 518:229–242

    Article  CAS  Google Scholar 

  • Hoiles W, Krishnamurthy V, Cranfield CG, Cornell B (2014) An engineered membrane to measure electroporation: effect of tethers and bioelectronic interface. Biophys J 107(6):1339–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karolis C, Coster HG, Chilcott TC, Barrow KD (1998) Differential effects of cholesterol and oxidised-cholesterol in egg lecithin bilayers. Biochim Biophys Acta 1368(2):247–255

    Article  CAS  PubMed  Google Scholar 

  • Krishna G, Schulte J, Cornell BA, Pace RJ, Osman PD (2003) Tethered bilayer membranes containing ionic reservoirs: selectivity and conductance. Langmuir 19(6):2294–2305

    Article  CAS  Google Scholar 

  • Laver D, Smith J, Coster H (1984) The thickness of the hydrophobic and polar regions of glycerol monooleate bilayers determined from the frequency-dependence of bilayer capacitance. Biochim Biophys Acta 772(1):1–9

    Article  CAS  Google Scholar 

  • Macht DI (1918) A pharmacological and therapeutic study of benzyl alcohol as a local anesthetic. J Pharmacol Exp Ther 11(3):263–279

    Google Scholar 

  • Pope JM, Dubro D, Doane JW, Westerman PW (1986) The ordering of benzyl alcohol and its influence on phospholipid order in bilayer membranes. J Am Chem Soc 108(18):5426–5433

    Article  CAS  Google Scholar 

  • Raudino A, Mauzerall D (1986) Dielectric properties of the polar head group region of zwitterionic lipid bilayers. Biophys J 50(3):441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes J, Latorre R (1979) Effect of the anesthetics benzyl alcohol and chloroform on bilayers made from monolayers. Biophys J 28(2):259–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shmunes E (1984) Allergic dermatitis to benzyl alcohol in an injectable solution. Arch Dermatol 120(9):1200–1201

    Article  CAS  PubMed  Google Scholar 

  • Simeonova M, Gimsa J (2006) The influence of the molecular structure of lipid membranes on the electric field distribution and energy absorption. Bioelectromagnetics 27(8):652–666

    Article  CAS  PubMed  Google Scholar 

  • Smith JR, Coster HGL, Laver DR (1985) The dependence of the conductance of phosphatidylcholine bilayers upon the concentration and composition of the external electrolyte. Biochim Biophys Acta 812(1):181–192

    Article  CAS  Google Scholar 

  • Thorne S, Duniec J (1983) The physical principles of energy transduction in chloroplast thylakoid membranes. Q Rev Biophys 16(02):197–278

    Article  CAS  PubMed  Google Scholar 

  • Wilson L, Martin S (1999) Benzyl alcohol as an alternative local anesthetic. Ann Emerg Med 33(5):495–499

    Article  CAS  PubMed  Google Scholar 

  • Yeo SY, Wang Y, Chilcott T, Antony A, Coster H, Leslie G (2014) Characterising nanostructure functionality of a cellulose triacetate forward osmosis membrane using electrical impedance spectroscopy. J Membr Sci 467:292–302

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadeel Alobeedallah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alobeedallah, H., Cornell, B. & Coster, H. The Effect of Benzyl Alcohol on the Dielectric Structure of Lipid Bilayers. J Membrane Biol 249, 833–844 (2016). https://doi.org/10.1007/s00232-016-9934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9934-x

Keywords

Navigation