Skip to main content
Log in

The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The F1FO-ATP synthase is the only enzyme in nature endowed with bi-functional catalytic mechanism of synthesis and hydrolysis of ATP. The enzyme functions, not only confined to energy transduction, are tied to three intrinsic features of the annular arrangement of c subunits which constitutes the so-called c-ring, the core of the membrane-embedded FO domain: (i) the c-ring constitution is linked to the number of ions (H+ or Na+) channeled across the membrane during the dissipation of the transmembrane electrochemical gradient, which in turn determines the species-specific bioenergetic cost of ATP, the “molecular currency unit” of energy transfer in all living beings; (ii) the c-ring is increasingly involved in the mitochondrial permeability transition, an event linked to cell death and to most mitochondrial dysfunctions; (iii) the c subunit species-specific amino acid sequence and susceptibility to post-translational modifications can address antibacterial drug design according to the model of enzyme inhibitors which target the c subunits. Therefore, the simple c-ring structure not only allows the F1FO-ATP synthase to perform the two opposite tasks of molecular machine of cell life and death, but it also amplifies the enzyme’s potential role as a drug target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA Jr, Jonas EA (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci USA 111:10580–10585. doi:10.1073/pnas.1401591111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allegretti M, Klusch N, Mills DJ, Vonck J, Kühlbrandt W, Davies KM (2015) Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 521:237–240. doi:10.1038/nature14185

    Article  CAS  PubMed  Google Scholar 

  • Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227

    Article  CAS  PubMed  Google Scholar 

  • Antoniel M, Giorgio V, Fogolari F, Glick GD, Bernardi P, Lippe G (2014) The oligomycin-sensitivity conferring protein of mitochondrial ATP synthase: emerging new roles in mitochondrial pathophysiology. Int J Mol Sci 15:7513–7536. doi:10.3390/ijms15057513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azarashvili T, Odinokova I, Bakunts A, Ternovsky V, Krestinina O, Tyynelä J, Saris NE (2014) Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening. Cell Calcium 55:69–77. doi:10.1016/j.ceca.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  • Azzone GF, Azzi A (1965a) Volume changes in liver mitochondria. Proc Natl Acad Sci USA 53:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzone GF, Azzi A (1965b) Volume changes induced by inorganic phosphate in liver mitochondria. Biochem J 94:10C–11C

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balemans W, Vranckx L, Nounis N, Pop O, Guillermont J, Vergauwen K, Mol S, Glissen R, Motte M, Lancois D, De Bolle M, Bonroy K, Lill H, Andries K, Bald D, Koul A (2012) Novel antibiotics targeting respiratory ATP synthesis in Gram-positive pathogenic bacteria. Antimicrob Agents Chemother 56:4131–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106. doi:10.1016/j.yjmcc.2014.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F, Forte MA (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077–2099

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Di Lisa F, Fogolari F, Lippe G (2015) From ATP to PTP and back: a dual function for the mitochondrial ATP synthase. Circ Res 116:1850–1862

    Article  CAS  PubMed  Google Scholar 

  • Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, Wieckowski MR, Kroemer G, Galluzzi L, Pinton P (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683. doi:10.4161/cc.23599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, Pinton P (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34:1608. doi:10.1038/onc.2014.462

    Article  CAS  PubMed  Google Scholar 

  • Boyer PD (1997) The ATP synthase—a splendid molecular machine. Annu Rev Biochem 66:717–749

    Article  CAS  PubMed  Google Scholar 

  • Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312. doi:10.1042/BJ20110162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Ko Y, Delannoy M, Ludtke SJ, Chiu W, Pedersen PL (2004) Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP. J Biol Chem 279:31761–31768

    Article  CAS  PubMed  Google Scholar 

  • Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dimroth P, von Ballmoos C, Meier T (2006) Catalytic and mechanical cycles in F-ATP synthases. EMBO Rep 7:276–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elston T, Wang H, Oster G (1998) Energy transduction in ATP synthase. Nature 391:510–513

    Article  CAS  PubMed  Google Scholar 

  • Faccenda D, Tan CH, Seraphim A, Duchen MR, Campanella M (2013) IF1 limits the apoptotic-signalling cascade by preventing mitochondrial remodelling. Cell Death Differ 20:686–697. doi:10.1038/cdd.2012.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson SJ (2010) ATP synthase: from sequence to ring size to the P/O ratio. Proc Natl Acad Sci USA 107:16755–16756. doi:10.1073/pnas.1012260107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galanis M, Mattoon JR, Nagley P (1989) Amino acid substitutions in mitochondrial ATP synthase subunit 9 of Saccharomyces cerevisiae leading to venturicidin or ossamycin resistance. FEBS Lett 249:333–336

    Article  CAS  PubMed  Google Scholar 

  • Giorgio V, Bisetto E, Soriano ME, Dabbeni-Sala F, Basso E, Petronilli V, Forte MA, Bernardi P, Lippe G (2009) Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem 284:33982–33988. doi:10.1074/jbc.M109.020115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887–5892. doi:10.1073/pnas.1217823110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraud MF, Paumard P, Sanchez C, Brèthes D, Velours J, Dautant A (2012) Rotor architecture in the yeast and bovine F1-c-ring complexes of F-ATP synthase. J Struct Biol 177:490–497. doi:10.1016/j.jsb.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  • Haagsma AC, Abdillahi-Ibrahim R, Wagner MJ, Krab K, Vergauwen K, Guillemont J, Andries K, Lill H, Koul A, Bald D (2009) Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Chemother 53:1290–1292. doi:10.1128/AAC.01393-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halestrap AP (2014) The C ring of the F1Fo ATP synthase forms the mitochondrial permeability transition pore: a critical appraisal. Front Oncol. 4:234. doi:10.3389/fonc.2014.00234

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong S, Pedersen PL (2008) ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol Mol Biol Rev 72:590–641. doi:10.1128/MMBR.00016-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter DR, Haworth RA (1979) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195:453–459

    Article  CAS  PubMed  Google Scholar 

  • Junge W, Müller DJ (2011) Biochemistry. Seeing a molecular motor at work. Science 333:704–705. doi:10.1126/science.1210238

    Article  CAS  PubMed  Google Scholar 

  • Junge W, Sielaff H, Engelbrecht S (2009) Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase. Nature 459:364–370. doi:10.1038/nature08145

    Article  CAS  PubMed  Google Scholar 

  • Karch J, Kwong JQ, Burr AR, Sargent MA, Elrod JW, Peixoto PM, Martinez-Caballero S, Osinska H, Cheng EH, Robbins J, Kinnally KW, Molkentin JD (2013) Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife 2:e00772. doi:10.7554/eLife.00772

    Article  PubMed  PubMed Central  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R, Ristic Z, Lill H, Dorange I, Guillemont J, Bald D, Andries K (2007) Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3:323–324

    Article  CAS  PubMed  Google Scholar 

  • Lakshamanan M, Xavier AS (2013) Bedaquiline-the first ATPsynthase inhibitor against multi-drug resistant tuberculosis. J Young Pharm 5:112–115. doi:10.1016/j.jyp.2013.12.002

    Article  Google Scholar 

  • Lehninger AL (1959) Reversal of various types of mitochondrial swelling by adenosine triphosphate. J Biol Chem 234:2465–2471

    CAS  PubMed  Google Scholar 

  • Matthies D, Zhou W, Klyszejko AL, Anselmi C, Yildiz Ö, Brandt K, Müller V, Faraldo-Gómez JD, Meier T (2014) High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na+-coupled ATP synthase. Nat Commun. doi:10.1038/ncomms6286

    PubMed  PubMed Central  Google Scholar 

  • Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science 308:659–662

    Article  CAS  PubMed  Google Scholar 

  • Mitome N, Ono S, Sato H, Suzuki T, Sone N, Yoshida M (2010) Essential arginine residue of the F(o)-a subunit in F(o)F(1)-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the F(o) proton channel. Biochem J 430:171–177. doi:10.1042/BJ20100621

    Article  CAS  PubMed  Google Scholar 

  • Nagley P, Hall RM, Ooi BG (1986) Amino acid substitutions in mitochondrial ATPase subunit 9 of Saccharomyces cerevisiae leading to oligomycin or venturicidin resistance. FEBS Lett 195:159–163

    Article  CAS  PubMed  Google Scholar 

  • Nathanson L, Gromet-Elhanan Z (2000) Mutations in the beta-subunit Thr(159) and Glu(184) of the Rhodospirillum rubrum F(0)F(1) ATP synthase reveal differences in ligands for the coupled Mg(2+)- and decoupled Ca(2+)-dependent F(0)F(1) activities. J Biol Chem 275:901–905

    Article  CAS  PubMed  Google Scholar 

  • Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A (2011) Multi-site TBT binding skews the inhibition of oligomycin on the mitochondrial Mg-ATPase in Mytilus galloprovincialis. Biochimie 93:1157–1164. doi:10.1016/j.biochi.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  • Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A (2012) Tri-n-butyltin binding to a low-affinity site decreases the F1FO-ATPase sensitivity to oligomycin in mussel mitochondria. Appl Organomet Chem 26:593–599. doi:10.1002/aoc.2904

    Article  CAS  Google Scholar 

  • Nesci S, Ventrella V, Pagliarani A (2013a) Modulation of the F1FO-ATPase function by butyltin compounds. Appl Organomet Chem 27:199–205. doi:10.1002/aoc.2948

    Article  CAS  Google Scholar 

  • Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A (2013b) Mussel and mammalian ATP synthase share the same bioenergetic cost of ATP. J Bioenerg Biomembr 45:289–300. doi:10.1007/s10863-013-9504-1

    Article  CAS  PubMed  Google Scholar 

  • Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A (2014a) Thiol oxidation of mitochondrial FO-c subunits: a way to switch off antimicrobial drug targets of the mitochondrial ATP synthase. Med Hypotheses 83:160–165. doi:10.1016/j.mehy.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  • Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A (2014b) The mitochondrial F1FO-ATPase desensitization to oligomycin by tributyltin is due to thiol oxidation. Biochimie 97:128–137. doi:10.1016/j.biochi.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  • Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A (2014c) Thiol oxidation is crucial in the desensitization of the mitochondrial F1FO-ATPase to oligomycin and other macrolide antibiotics. Biochim Biophys Acta 1840:1882–1891. doi:10.1016/j.bbagen.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  • Nesci S, Trombetti F, Ventrella V, Pagliarani A (2015) Opposite rotation directions in the synthesis and hydrolysis of ATP by the ATP synthase: hints from a subunit asymmetry. J Membr Biol 248:163–169. doi:10.1007/s00232-014-9760-y

    Article  CAS  PubMed  Google Scholar 

  • Nicholls DG, Ferguson SJ (2013) Bioenergetics, 4th edn. Academic Press, Amsterdam

    Google Scholar 

  • Oberfeld B, Brunner J, Dimroth P (2006) Phospholipids occupy the internal lumen of the c ring of the ATP synthase of Escherichia coli. Biochemistry 45:1841–1851

    Article  CAS  PubMed  Google Scholar 

  • Pagliarani A, Nesci S, Ventrella V (2013) Modifiers of the oligomycin sensitivity of the mitochondrial F1FO-ATPase. Mitochondrion 13:312–319. doi:10.1016/j.mito.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou S, Melandri AB, Solaini G (1998) Relevance of divalent cations to ATP-driven proton pumping in beef heart mitochondrial F0F1-ATPase. J Bioenerg Biomembr 30:533–541

    Article  CAS  PubMed  Google Scholar 

  • Petersen J, Förster K, Turina P, Gräber P (2012) Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast. Proc Natl Acad Sci USA 109:11150–11155. doi:10.1073/pnas.1202799109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Müller DJ (2005) The c15 ring of the Spirulina platensis F-ATP synthase: F1/Fo symmetry mismatch is not obligatory. EMBO Rep 6:1040–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogoryelov D, Yildiz O, Faraldo-Gómez JD, Meier T (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16:1068–1073. doi:10.1038/nsmb.1678

    Article  CAS  PubMed  Google Scholar 

  • Pogoryelov D, Krah A, Langer JD, Yildiz Ö, Faraldo-Gómez JD, Meier T (2010) Microscopic rotary mechanism of ion translocation in the F(o) complex of ATP synthases. Nat Chem Biol 6:891–899

    Article  CAS  PubMed  Google Scholar 

  • Preiss L, Yildiz O, Hicks DB, Krulwich TA, Meier T (2010) A new type of proton coordination in an F(1)F(o)-ATP synthase rotor ring. PLoS Biol 8:e1000443. doi:10.1371/journal.pbio.1000443

    Article  PubMed  PubMed Central  Google Scholar 

  • Preiss L, Klyszejko AL, Hicks DB, Liu J, Fackelmayer OJ, Yildiz Ö, Krulwich TA, Meier T (2013) The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4. Proc Natl Acad Sci USA 110:7874–7879. doi:10.1073/pnas.1303333110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preiss L, Langer JD, Yildiz Ö, Eckhardt-Strelau L, Guillemont JEG, Koul A, Meier T (2015) Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci Adv. doi:10.1126/sciadv.1500106

    PubMed  PubMed Central  Google Scholar 

  • Runswick MJ, Bason JV, Montgomery MG, Robinson GC, Fearnley IM, Walker JE (2013) The affinity purification and characterization of ATP synthase complexes from mitochondria. Open Biol 3:120160. doi:10.1098/rsob.120160

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakthivel S (2012) ATP-ase as a potential drug target for cancer, tumor growth and cellular functions. Int J Hum Genet 12:151–156

    CAS  Google Scholar 

  • Salomon AR, Zhang Y, Seto H, Khosla C (2001) Structure-activity relationships within a family of selectively cytotoxic macrolide natural products. Org Lett 3:57–59

    Article  CAS  PubMed  Google Scholar 

  • Sebald W, Wachter E, Tzagoloff A (1979) Identification of amino acid substitutions in the dicyclohexylcarbodiimide-binding subunit of the mitochondrial ATPase complex from oligomycin-resistant mutants of Saccharomyces cerevisiae. Eur J Biochem 100:599–607

    Article  CAS  PubMed  Google Scholar 

  • Segala E, Sougakoff W, Nevejans-Chauffour A, Jarlier V, Petrella S (2012) New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob Agents Chemother 56:2326–2334. doi:10.1128/AAC.06154-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein TP (2014) An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F1FO ATP synthases. J Bioenerg Biomembr 46:229–241. doi:10.1007/s10863-014-9547-y

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Watt NK, Garewal N, Pugarzenthan T (2013) Bedaquiline: a new weapon against MDR and XDR-TB. Int J Basic Clin Pharmacol 2:96–102. doi:10.5455/2319-2003.ijbcp20130301

    Article  Google Scholar 

  • Singh S, Kaur G, Mangia V, Gupta MK (2014) Quinoline and quinolones: promising scaffolds for future antimycobacterial agents. J Enzyme Inhib Med Chem. doi:10.3109/14756366.2014.930454

    Google Scholar 

  • Steed PR, Fillingame RH (2008) Subunit a facilitates aqueous access to a membrane-embedded region of subunit c in Escherichia coli F1F0 ATP synthase. J Biol Chem 283:12365–12372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    Article  CAS  PubMed  Google Scholar 

  • Symersky J, Osowski D, Walters DE, Mueller DM (2012a) Oligomycin frames a common drug-binding site in the ATP synthase. Proc Natl Acad Sci USA 109:13961–13965. doi:10.1073/pnas.1207912109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symersky J, Pagadala V, Osowski D, Krah A, Meier T, Faraldo-Gómez JD, Mueller DM (2012b) Structure of the c(10) ring of the yeast mitochondrial ATP synthase in the open conformation. Nat Struct Mol Biol 19(485–91):S1

    Google Scholar 

  • Vollmar M, Schlieper D, Winn M, Büchner C, Groth G (2009) Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. J Biol Chem 284:18228–18235. doi:10.1074/jbc.M109.006916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Ballmoos C, Cook GM, Dimroth P (2008) Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys 37:43–64. doi:10.1146/annurev.biophys.37.032807.130018

    Article  Google Scholar 

  • von Ballmoos C, Wiedenmann A, Dimroth P (2009) Essentials for ATP synthesis by F1FO ATP synthases. Annu Rev Biochem 78:649–672. doi:10.1146/annurev.biochem.78.081307

    Article  Google Scholar 

  • Vonck J, von Nidda TK, Meier T, Matthey U, Mills DJ, Kühlbrandt W, Dimroth P (2002) Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase. J Mol Biol 321:307–316

    Article  CAS  PubMed  Google Scholar 

  • Walker JE (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans 41:1–16. doi:10.1042/BST20110773

    Article  CAS  PubMed  Google Scholar 

  • Watt IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci USA 107:16823–16827. doi:10.1073/pnas.1011099107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Pagliarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesci, S., Trombetti, F., Ventrella, V. et al. The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives. J Membrane Biol 249, 11–21 (2016). https://doi.org/10.1007/s00232-015-9860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9860-3

Keywords

Navigation