Skip to main content
Log in

Molecular Simulation of Cell Membrane Deformation by Picosecond Intense Electric Pulse

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The application of pulsed electric field is emerging as a new technique for cancer therapy. The irreversible electroporation is the major bioelectric effect to induce cell death. The pulsed electric field is transferred to target deep tissue non-invasively and precisely when the pulse duration is in picosecond regime. In this proposed work, the intense electric field with 100 ps pulse width is used for irreversible electroporation. If the electric field strength increases, the pore in the cell membrane enlarges, causing a loss of membrane intactness and the direct killing of cancer cells. This phenomenon is explored by molecular dynamics simulation. The electric field in the range of 0.8–5 V/nm is used for membrane dynamics. The membrane deformation occurs at the electric field of 5 V/nm. Picosecond pulsed electric field has a wealth of ultra-band spectrum, with extended time and enhanced spatial resolution and low signal distortion. The ultra-wide band antenna is used as a pulse delivery system for non-invasive skin cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Clarendon, Oxford

    Google Scholar 

  • Berendsen HJC, Postma JPM, Gunsteren WF, Hermans J, Pullman B (1981) Intermolecular forces. Reidel, Dordrecht

    Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drumen R (1995) Gromacs: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56

    Article  CAS  Google Scholar 

  • Berger DO, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bockmann RA, de Groot BL, Kakorin S, Neumann E, Grubmuller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850

    Article  PubMed Central  PubMed  Google Scholar 

  • Caleman C, van der Spoel D (2008) Picosecond melting of ice by an infrared laser pulse: a simulation study. Angew Chem Intl Ed 47:1417–1420

    Article  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particlemesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Egberts E, Berendsen HJC (1988) Molecular dynamics simulation of a smectic liquid crystal with atomic detail. J Chem Phys 89(6):3718–3732

    Article  CAS  Google Scholar 

  • Frey W, White JA, Price RO, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90(10):3608–3615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hess B, Bekker H, Berendsen HJ (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hu Q, Sridhara V, Joshi RP, Kolb JF, Schoenbach KH (2006) Molecular dynamics analysis of high electric pulse effects on bilayer membranes containing DPPC and DPPS. IEEE Trans Plasma Sci 34(4):1405–1411

    Article  CAS  Google Scholar 

  • Jiang FY, Bouret Y, Kindt JT (2004) Molecular dynamics simulations of the lipid bilayer edge. Biophys J 87:182–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joshi RP, Hu Q (2011) Case for applying subnanosecond high-intensity, electrical pulses to biological cells. IEEE Trans Biomed Eng 58(10):2860–2866

    Article  PubMed  Google Scholar 

  • Joshi RP, Hu Q, Aly R, Schoenbach KH, Hjalmarson HP (2001) Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrafast electrical pulses. Phys Rev E 64:11913-01–11913-13

    Article  Google Scholar 

  • Kumar P, Altunc S, Baum CE, Buchenauer CJ, Christodoulou CG, Schamiloglu E (2010) A Prolate-Spheroidal impulse-radiating antenna system to launch and focus 100-Ps pulses for melanoma treatment. In: Ultrawideband and ultrashort impulse signals, Sevastopol, pp138–140, 6–10 Sept 2010

  • Leontiadou H, Mark AE, Marrink SJ (2004) Molecular dynamics simulations of hydrophilic pores in lipid bilayers. Biophys J 86(4):2156–2164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mir LM, Orlowski S, Belehradek J Jr, Teissie J, Rols MP, Sersa G, Miklavcic D, Gilbert R, Heller R (1995) Biomedical applications of electric pulses with special emphasis on antitumor electro chemotherapy. Bioelectrochem Bioenerg 38:203–207

    Article  CAS  Google Scholar 

  • Neumann E, Kakorin S, Toensig K (1999) The effect of resting transmembrane voltage on cell electro permeabilization: a numerical analysis. Bioelectrochem Bioenerg 48:3–16

    Article  CAS  PubMed  Google Scholar 

  • Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson J, Beebe SJ, Kolb JF, Schoenbach KH (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343(2):351–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schoenbach KH, Joshi RP, Kolb JF, Chen N, Stacey M, Blackmore PF, Buescher ES, Beebe SJ (2004) Ultra short electrical pulses open a new gateway into biological cells. Proc IEEE 92(7):1122–1137

    Article  CAS  Google Scholar 

  • Schoenbach KH, Hargrave B, Joshi RP, Kolb JF, Osgood C, Nuccitelli R, Pakhomov A, Swanson RJ, Stacey M, White JA, Xiao S, Zhang J, Beebe SJ, Blackmore PF, Buescher ES (2007) Bioelectric effects of intense nanosecond pulses. IEEE Trans Dielectr Electr Insul 14(5):1088–1119

    Article  CAS  Google Scholar 

  • Schoenbach KH, Xiao S, Joshi RP, Camp JT, Heeren T, Kolb JF, Beebe SJ (2008) The effect of intense subnanosecond electrical pulses on biological cells. IEEE Trans Plasma Sci 36(2):414–422

    Article  Google Scholar 

  • Sridhara V, Joshi RP (2014) Numerical study of lipid translocation driven by nanoporation due to multiple high-intensity, ultrashort electrical pulses. Biochim Biophys Acta 1838:902–909

    Article  CAS  PubMed  Google Scholar 

  • Teissie J, Eynard N, Gabriel B, Rols MP (1999) Electro permeabilization of cell membranes. Adv Drug Deliv Rev 35:3–19

    Article  CAS  PubMed  Google Scholar 

  • Tekle E, Astumian RD, Friauf WA, Chock PB (2001) Asymmetric pore distribution and loss of membrane lipid in electroporated DOPC vesicles. Biophys J 81:960–968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tieleman D, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331(3):235–270

    Article  CAS  PubMed  Google Scholar 

  • Tieleman DP, Leontiadou H, Mark AE, Marrink SJ (2003a) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. Comput Phys Commun 125(21):6382–6383

    CAS  Google Scholar 

  • Tieleman PD, Leontiadou H, Mark AE, Marrink SJ (2003b) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125:6382–6383

    Article  CAS  PubMed  Google Scholar 

  • van der Spoel D, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers AL, van Drunen R, Berendsen HJC (1996) Gromacs user manual version 1.2. University of Groningen, Groningen

    Google Scholar 

  • Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112:13588–13596

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arockiasamy Petrishia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrishia, A., Sasikala, M. Molecular Simulation of Cell Membrane Deformation by Picosecond Intense Electric Pulse. J Membrane Biol 248, 1015–1020 (2015). https://doi.org/10.1007/s00232-015-9812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9812-y

Keywords

Navigation