Skip to main content
Log in

Peptide Folding in Translocon-Like Pores

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The cellular translocon, present in all three domains of life, is one of the most versatile and important biological nanopores. This complex molecular apparatus is directly responsible for the secretion of globular proteins across membranes as well as the insertion of integral membrane proteins into lipid bilayers. Recently determined structures of the archaean SecY translocon reveal an hour-glass-shaped pore, which accommodates the nascent peptide chain during translocation. While these structures provide important insights into ribosome binding to the translocon, threading of the nascent chain into the channel, and lateral gate opening for releasing the folded helical peptide into the membrane bilayer, the exact folding pathway of the peptide inside the protein-conducting channel during translocation and prior to the lateral release into the bilayer remains elusive. In the present study, we use molecular dynamics simulations to investigate atomic resolution peptide folding in hour-glass-shaped pore models that are based on the SecY translocon channel structure. The theoretical setup allows systematic variation of key determinants of folding, in particular the degree of confinement of the peptide and the hydration level of the pore. A 27-residue hydrophobic peptide was studied that is preferentially inserted into membranes by the translocon. Our results show that both pore diameter as well as channel hydration are important determinants for folding efficiency and helical stability of the peptide, therefore providing important insights into translocon gating and lateral peptide partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen HC (1983) Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52:24–34

    Article  CAS  Google Scholar 

  • Anishkin A, Sukharev S (2004) Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J 86:2883–2895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beckstein O, Sansom MSP (2003) Liquid-vapor oscillations of water in hydrophobic nanopores. Proc Natl Acad Sci USA 100:7063–7068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beckstein O, Sansom MSP (2004) The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Phys Biol 1:42–52

    Article  CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Cheng Z, Gilmore R (2006) Slow translocon gating causes cytosolic exposure of transmembrane and lumenal domains during membrane protein integration. Nat Struct Mol Biol 13:930–936

    Article  CAS  PubMed  Google Scholar 

  • Curnow P, Booth PJ (2009) The transition state for integral membrane protein folding. Proc Natl Acad Sci USA 106:773–778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cymer F, von Heijne G (2013) Cotranslational folding of membrane proteins probed by arrest-peptide-mediated force measurements. Proc Natl Acad Sci USA 110:14640–14645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cymer F, von Heijne G, White SH (2014) Mechanisms of integral membrane protein insertion and folding. J Mol Biol 427:999–1022

    Article  PubMed  Google Scholar 

  • Frauenfeld J, Gumbart J, Sluis EO, Funes S, Gartmann M, Beatrix B, Mielke T, Berninghausen O, Becker T, Schulten K, Beckmann R (2011) Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat Struct Mol Biol 18:614–621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gumbart J, Schulten K (2006) Molecular dynamics studies of the archaeal translocon. Biophys J 90:2356–2367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gumbart J, Schulten K (2007) Structural determinants of lateral gate opening in the protein translocon. Biochemistry 46:11147–11157

    Article  CAS  PubMed  Google Scholar 

  • Gumbart J, Schulten K (2008) The roles of pore ring and plug in the SecY protein-conducting channel. J Gen Physiol 132:709–719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gumbart J, Chipot C, Schulten K (2011) Free-energy cost for translocon-assisted insertion of membrane proteins. Proc Natl Acad Sci USA 108:3596–3601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gumbart JC, Teo I, Roux B, Schulten K (2013) Reconciling the roles of kinetic and thermodynamic factors in membrane-protein insertion. J Am Chem Soc 135:2291–2297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haider S, Hall BA, Sansom MSP (2006) Simulations of a protein translocation pore: SecY. Biochemistry 45:13018–13024

    Article  CAS  PubMed  Google Scholar 

  • Hershey JW (1991) Translational control in mammalian cells. Annu Rev Biochem 60:717–755

    Article  CAS  PubMed  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–381

    Article  CAS  PubMed  Google Scholar 

  • Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Ismail N, Hedman R, Linden M, von Heijne G (2015) Charge-driven dynamics of nascent-chain movement through the SecYEG translocon. Nat Struct Mol Biol 22(2):145–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobs RE, White SH (1989) The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry 28:3421–3437

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  • Lucent D, Vishal V, Pande VS (2007) Protein folding under confinement: a role for solvent. Proc Natl Acad Sci USA 104:10430–10434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ojeda PA, Londono A, Nan-Yow C, Garcia M (2009) Monte Carlo simulations of proteins in cages: influence of confinement on the stability of intermediate states. Biophys J 96:1076–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park E, Menetret JF, Gumbart JC, Ludtke SJ, Li W, Whynot A, Rapoport TA, Akey CW (2014) Structure of the SecY channel during initiation of protein translocation. Nature 506:102–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Popot JL, Engelman DM (1990) Membrane-protein folding and oligomerization—the 2-stage model. Biochemistry 29:4031–4037

    Article  CAS  PubMed  Google Scholar 

  • Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669

    Article  CAS  PubMed  Google Scholar 

  • Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP (1996) HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph Model 14:354

    Article  CAS  Google Scholar 

  • Sorin EJ, Pande VS (2006) Nanotube confinement denatures protein helices. J Am Chem Soc 128:6316–6317

    Article  CAS  PubMed  Google Scholar 

  • Takagi F, Koga N, Takada S (2003) How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations. Proc Natl Acad Sci USA 100:11367–11372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulmschneider JP, Ulmschneider MB (2008a) Sampling efficiency in explicit and implicit membrane environments studied by peptide folding simulations. Proteins 75(3):586–597

    Article  Google Scholar 

  • Ulmschneider MB, Ulmschneider JP (2008b) Membrane adsorption, folding, insertion and translocation of synthetic trans-membrane peptides. Mol Membr Biol 25:245–257

    Article  CAS  PubMed  Google Scholar 

  • Ulmschneider JP, Ulmschneider MB, Di Nola A (2006a) Monte Carlo vs molecular dynamics for all-atom polypeptide folding simulations. J Phys Chem B 110:16733–16742

    Article  CAS  PubMed  Google Scholar 

  • Ulmschneider MB, Sansom MS, Di Nola A (2006b) Evaluating tilt angles of membrane-associated helices: comparison of computational and NMR techniques. Biophys J 90:1650–1660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulmschneider MB, Ulmschneider JP, Sansom MSP, Di Nola A (2007) A generalized born implicit membrane representation compared to experimental insertion free energies. Biophys J 92:2338–2349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulmschneider MB, Doux JPF, Killian JA, Smith J, Ulmschneider JP (2010) Mechanism and kinetics of peptide partitioning into membranes. J Am Chem Soc 132:3452–3460

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44

    Article  PubMed  Google Scholar 

  • Voorhees RM, Fernandez IS, Scheres SH, Hegde RS (2014) Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution. Cell 157:1632–1643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White SH, von Heijne G (2008) How translocons select transmembrane helices. Ann Rev Biophys 37:23–42

    Article  CAS  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Miller TF 3rd (2012a) Direct simulation of early-stage Sec-facilitated protein translocation. J Am Chem Soc 134:13700–13707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang B, Miller TF 3rd (2012b) Long-timescale dynamics and regulation of Sec-facilitated protein translocation. Cell Rep 2:927–937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou HX, Dill KA (2001) Stabilization of proteins in confined spaces. Biochemistry 40:11289–11293

    Article  CAS  PubMed  Google Scholar 

  • Zimmer J, Nam Y, Rapoport TA (2008) Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455:936–943

    Article  CAS  PubMed  Google Scholar 

  • Ziv G, Haran G, Thirumalai D (2005) Ribosome exit tunnel can entropically stabilize α-helices. Proc Natl Acad Sci USA 102:18956–18961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Images were prepared with VMD and rendered with Tachyon (Humphrey et al. 1996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin B. Ulmschneider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulmschneider, M.B., Koehler Leman, J., Fennell, H. et al. Peptide Folding in Translocon-Like Pores. J Membrane Biol 248, 407–417 (2015). https://doi.org/10.1007/s00232-015-9808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9808-7

Keywords

Navigation