Skip to main content

Advertisement

Log in

Structural and Thermodynamic Insight into Spontaneous Membrane-Translocating Peptides Across Model PC/PG Lipid Bilayers

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We present results of Martini coarse-grained force field simulations to estimate the potentials of mean force for a series of recently screened spontaneous membrane-translocating peptides, SMTPs. We consider model bilayer composed of POPC and POPG, the latter providing the anionic component as used in experimental studies. We observe a significant barrier for translocation in the case of the canonical cationic cell-penetrating peptide nona-arginine, ARG9. In the case of the TP1, TP2, and TP3 peptides, potentials of mean force are systematically lower relative to the ARG9 case. Though the barriers predicted by the simulations, on the order of 20 kcal/mol, are still rather large to recapitulate the experimental kinetics of internalization, we emphasize that the qualitative trend of reduction of barrier heights is a significant result. Decomposition of the PMFs indicates that though there is a substantial entropic stability when the peptides reside at bilayer center, barriers as predicted from these force field-based studies are largely determined by enthalpic (potential energy) interactions. We note that the binding of the SMTPs is critically dependent on the mix of hydrophilic and hydrophobic residues that constitute the amino acid motif/sequence of these peptides. For the cationic ARG9 which only contains hydrophilic residues, there is no tight binding observed. The specific motif \(\varPhi \mathrm{R} \varPhi \varPhi \mathrm{R}\) (where \(\varPhi\) is a general residue) is a potential sequence in drug/peptide design. The SMTPs with this motif are able to translocate into membrane at a significantly lower free energy cost, compared to the negative control peptides. Finally, we compare the different membrane perturbations induced by the presence of the different peptides in the bilayer center. In some cases, hydrophilic pores are observed to form, thus conferring stability to the internalized state. In other cases, SMTPs are associated only with membrane defects such as induced membrane curvature. These latter observations suggest some influence of membrane rigidity as embodied in the full range of membrane undulatory modes in defining pore-forming propensities in bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bangel U (ed) (2006) Handbook of cell penetrating peptides, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587:1693–1702

    Article  CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, Gunsteren WFV, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Cruz J, Mihailescu M, Wiedman G, Herman K, Searson P, Wimley K, Hristova William (2013) A membrane-translocating peptide penetrates into bilayers without significant bilayer perturbations. Biophys J 104(11):2419–2428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeJong DH, Singh G, Bennett WFD, Arnarez C, Wassenaar TA, Schäfer LV, Periole X, Tieleman DP, Marrink SJ (2013) Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput 9(1):687–697

    Article  CAS  Google Scholar 

  • Freites JA, Tobias DJ, White SH (2006) A voltage-sensor water pore. Biophys J 91(11):L90–L92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    Article  CAS  PubMed  Google Scholar 

  • He J, Hristova K, Wimley WC (2012) A highly charged voltage-sensor helix spontaneously translocates across membranes. Angew Chem Int Ed Engl 51(29):7150–7153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He J, Kauffman WB, Fuselier T, Naveen SK, Voss TG, Hristova K, Wimley WC (2013) Direct cytosolic delivery of polar cargo to cells by spontaneous membrane-translocating peptides. J Biol Chem. doi:10.1074/Jbc.M113.488312

  • Hess B, Bekker H, JCBerendsen H, GEMFraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  • Hu Y, Ou S, Patel S (2013) Free energetics of arginine permeation into model dmpc lipid bilayers: coupling of effective counterion concentration and lateral bilayer dimensions. J Phys Chem B 117:11641–11653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu Y, Liu X, Sinha SK, Patel S (2014) Translocation thermodynamics of linear and cyclic nonaarginine into model dppc bilayer via coarse-grained molecular dynamics simulation: Implications of pore formation and nonadditivity. J Phys Chem B 118(10):2670–2682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang K, García AE (2013) Free energy of translocating an arginine-rich cell-penetrating peptide across a lipid bilayer suggests pore formation. Biophys J 104(2):412–420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Järver P, Langel Ü (2006) Cell-penetrating peptides—a brief introduction. Biochim Biophys Acta 1758:260–263

    Article  PubMed  Google Scholar 

  • Jiao CY, Delaroche D, Burlina F, Alves ID, Chassaing G, Sagan S (2009) Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem 284(49):33957–33965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kosuge M, Takeuchi T, Nakase I, Jones AT, Futaki S (2008) Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. Bioconjug Chem 19(3):656–664

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculation s on biomolecules. i. The method. J Comp Chem 13(8):1011–1021

    Article  CAS  Google Scholar 

  • Laettig-Tuennemann G, Prinz M, Hoffmann D, Behlke J, Palm-Apergi C, Morano I, Herce HD, Cardoso MC (2011) Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides. Nature Commun 2:1–6

    Google Scholar 

  • Lazaridis T, III JML, PeBenito L (2014) Implicit membrane treatment of buried charged groups: application to peptide translocation across lipid bilayers. Biochim Biophys Acta. http://dx.doi.org/10.1016/j.bbamem.2014.01.015

  • Lin J, Motylinski J, Krauson AJ, Wimley WC, Searson PC, Hristova K (2012) Interactions of membrane active peptides with planar supported bilayers: an impedance spectroscopy study. Langmuir 28(14):6088–6096

    Article  CAS  PubMed  Google Scholar 

  • Lundberg P, Langel Ü (2003) A brief introduction to cell-penetrating peptides. J Mol Recognit 16:227–233

    Article  CAS  PubMed  Google Scholar 

  • Marks JR, Placone J, Hristova K, Wimley WC (2011) Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J Am Chem Soc 133(23):8995–9004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marrink SJ, Vries AHD, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108(2):750–760

    Article  CAS  Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The martini coarse-grained force field: extension to proteins. J Chem Theory Comput 4(5):819–834

    Article  CAS  Google Scholar 

  • Notman R, Anwar J, Briels W, Noro MG, den Otter W (2008) Simulations of skin barrier function: free energies of hydrophobic and hydrophilic transmembrane pores in ceramide bilayers. Biophys J 95(10):4763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pavan S, Berti F (2011) Short peptides as biosensor transducers. Anal Bioanal Chem 402:3055–3070

    Article  PubMed  Google Scholar 

  • Saalik P, Niinep A, Pae J, Hansen M, Lubenets D, Langel U, Pooga M (2011) Penetration without cells: membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles. J Control Release 153(2):117–125

    Article  PubMed  Google Scholar 

  • Schmidta N, Mishrab A, Laia GH, Wong GC (2010) Arginine-rich cell-penetrating peptides. FEBS Lett 584:1806–1813

    Article  Google Scholar 

  • Schow EV, Freites JA, Cheng P, Bernsel A, von Heijne G, White SH, Tobias DJ (2011) Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments. J Membr Biol 239(1–2):35–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shin MC, Zhang J, Min KA, Lee K, Byun Y, David AE, H He VCY (2013) Cell-penetrating peptides: achievements and challenges in application for cancer treatment. J Biomed Mater Res A 00:00–00

    Google Scholar 

  • Tunnemann G, Ter-Avetisyan G, Martin RM, Stockl M, Herrmann A, Cardoso MC (2009) Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Biol Chem 14(4):469–476

    Google Scholar 

  • Walrant A, Matheron L, Cribier S, Chaignepain S, Jobin ML, Sagan S, Alves ID (2013) Direct translocation of cell-penetrating peptides in liposomes: a combined mass spectrometry quantification and fluorescence detection study. Anal Biochem 438(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained martini force field. PLoS Comput Biol 6(6):e1000810

    Article  PubMed Central  PubMed  Google Scholar 

  • Zorko M, Langel U (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. J Mol Recognit 57:529–545

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Science Foundation (CAREER:MCB:1149802). Computational resources are acknowledged via support from National Institutes of Health COBRE:P20-RR015588 in the Chemical Engineering Department and COBRE:P20-RR017716 in the Department of Chemistry and Biochemistry at the University of Delaware. S. P. thanks N. Patel for fruitful discussion and encouragement for the duration of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Patel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4073 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Patel, S. Structural and Thermodynamic Insight into Spontaneous Membrane-Translocating Peptides Across Model PC/PG Lipid Bilayers. J Membrane Biol 248, 505–515 (2015). https://doi.org/10.1007/s00232-014-9702-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9702-8

Keywords

Navigation