Skip to main content

Advertisement

Log in

Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Membrane composition is a key factor that regulates the destructive activity of antimicrobial peptides and the non-leaky permeation of cell penetrating peptides in vivo. Hence, the choice of model membrane is a crucial aspect in NMR studies and should reflect the biological situation as closely as possible. Here, we explore the structure and dynamics of the short multifunctional peptide BP100 using a multinuclear solid-state NMR approach. The membrane alignment and mobility of this 11 amino acid peptide was studied in various synthetic lipid bilayers with different net charge, fluidity, and thickness, as well as in native biomembranes harvested from prokaryotic and eukaryotic cells. 19F-NMR provided the high sensitivity and lack of natural abundance background that are necessary to observe a labelled peptide even in protoplast membranes from Micrococcus luteus and in erythrocyte ghosts. Six selectively 19F-labeled BP100 analogues gave remarkably similar spectra in all of the macroscopically oriented membrane systems, which were studied under quasi-native conditions of ambient temperature and full hydration. This similarity suggests that BP100 has the same surface-bound helical structure and high mobility in the different biomembranes and model membranes alike, independent of charge, thickness or cholesterol content of the system. 31P-NMR spectra of the phospholipid components did not indicate any bilayer perturbation, so the formation of toroidal wormholes or micellarization can be excluded as a mechanism of its antimicrobial or cell penetrating action. However, 2H-NMR analysis of the acyl chain order parameter profiles showed that BP100 leads to considerable membrane thinning and thereby local destabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afonin S, Glaser RW, Berditchevskaia M, Wadhwani P, Gührs KH, Möllmann U, Perner A, Ulrich AS (2003) 4-Fluorophenylglycine as a label for 19F NMR structure analysis of membrane-associated peptides. ChemBioChem 4:1151–1163. doi:10.1002/cbic.200300568

    Article  Google Scholar 

  • Afonin S, Grage SL, Ieronimo M, Wadhwani P, Ulrich AS (2008a) Temperature-dependent transmembrane insertion of the amphiphilic peptide PGLa in lipid bilayers observed by solid state 19F NMR spectroscopy. J Am Chem Soc 130:16512–16514. doi:10.1021/ja803156d

    Article  Google Scholar 

  • Afonin S, Dürr UH, Wadhwani P, Salgado J, Ulrich AS (2008b) Solid state NMR structure analysis of the antimicrobial peptide gramicidin S in lipid membranes: concentration-dependent re-alignment and self-assembly as a β-Barrel. Top Curr Chem 273:139–154. doi:10.1007/128_2007_20

    Article  Google Scholar 

  • Afonin S, Glaser RW, Sachse C, Salgado J, Wadhwani P, Ulrich AS (2014) 19F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids. Biochim Biophys Acta 1838:2260–2268. doi:10.1016/j.bbamem.2014.03.017

    Article  Google Scholar 

  • Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. In: Neufeld E, Ginsburg V (eds) Methods in enzymology, vol VIII., Complex CarbohydratesAcademic Press, New York, pp 115–118

    Google Scholar 

  • Anbazhagan V, Schneider D (2010) The membrane environment modulates self-association of the human GpA TM domain-implications for membrane protein folding and transmembrane signaling. Biochim Biophys Acta 1798:1899–1907. doi:10.1016/j.bbamem.2010.06.027

    Article  Google Scholar 

  • Bortolus M, De Zotti M, Formaggio F, Maniero AL (2013) Alamethicin in bicelles: orientation, aggregation, and bilayer modification as a function of peptide concentration. Biochim Biophys Acta 1828:2620–2627. doi:10.1016/j.bbamem.2013.07.007

    Article  Google Scholar 

  • Chen H, Viel S, Ziarelli F, Peng L (2013) 19F NMR: a valuable tool for studying biological events. Chem Soc Rev 42:7971–7982. doi:10.1039/c3cs60129c

    Article  Google Scholar 

  • Cheng JT, Hale JD, Elliot M, Hancock RE, Straus SK (2009) Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys J 96:552–565. doi:10.1016/j.bpj.2008.10.012

    Article  Google Scholar 

  • Cross TA, Murray DT, Watts A (2013) Helical membrane protein conformations and their environment. Eur Biophys J 42:731–755. doi:10.1007/s00249-013-0925-x

    Article  Google Scholar 

  • Davis JH, Jeffrey KR, Bloom M, Valic MI, Higgs TP (1976) Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem Phys Lett 42:390–394

    Article  ADS  Google Scholar 

  • de Planque MR, Rijkers DT, Liskamp RM, Separovic F (2004) The αM1 transmembrane segment of the nicotinic acetylcholine receptor interacts strongly with model membranes. Magn Reson Chem 42:148–154. doi:10.1002/mrc.1326

    Article  Google Scholar 

  • Didenko T, Liu JJ, Horst R, Stevens RC, Wüthrich K (2013) Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs. Curr Opin Struct Biol 23:740–747. doi:10.1016/j.sbi.2013.07.011

    Article  Google Scholar 

  • Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P (2011) Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plant cells. ChemBioChem 12:132–137. doi:10.1002/cbic.20100040221

    Article  Google Scholar 

  • Epand RM, Epand RF, Arnusch CJ, Papahadjopoulos-Sternberg B, Wang G, Shai Y (2010a) Lipid clustering by three homologous arginine-rich antimicrobial peptides is insensitive to amino acid arrangement and induced secondary structure. Biochim Biophys Acta 1798:1272–1280. doi:10.1016/j.bbamem.2010.03.012

    Article  Google Scholar 

  • Epand RF, Maloy WL, Ramamoorthy A, Epand RM (2010b) Probing the “charge cluster mechanism” in amphipathic helical cationic antimicrobial peptides. Biochemistry 49:4076–4084. doi:10.1021/bi100378m

    Article  Google Scholar 

  • Findlay EJ, Barton PG (1978) Phase behavior of synthetic phosphatidylglycerols and binary mixtures with phosphatidylcholines in the presence and absence of calcium ions. Biochemistry 17:2400–2405. doi:10.1021/bi00605a023

    Article  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Google Scholar 

  • Glaser RW, Ulrich AS (2003) Susceptibility corrections in solid-state NMR experiments with oriented membrane samples. Part I: applications. J Magn Reson 164:104–114. doi:10.1016/S1090-7807(03)00207-6

  • Glaser RW, Sachse C, Dürr UH, Wadhwani P, Ulrich AS (2004) Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels. J Magn Reson 168:153–163. doi:10.1016/j.jmr.2004.02.008

    Article  ADS  Google Scholar 

  • Glaser RW, Sachse C, Dürr UH, Wadhwani P, Afonin S, Strandberg E, Ulrich AS (2005) Concentration-dependent realignment of the antimicrobial peptide PGLa in lipid membranes observed by solid-state 19F-NMR. Biophys J 88:3392–3397. doi:10.1529/biophysj.104.056424

    Article  Google Scholar 

  • Gopinath T, Mote KR, Veglia G (2013) Sensitivity and resolution enhancement of oriented solid-state NMR: application to membrane proteins. Prog Nucl Magn Reson Spectrosc 75:50–68. doi:10.1016/j.pnmrs.2013.07.004ì

    Article  Google Scholar 

  • Grage SL, Afonin S, Ulrich AS (2010) Dynamic transitions of membrane-active peptides. Methods Mol Biol 618:183–207. doi:10.1007/978-1-60761-594-1_13

    Article  Google Scholar 

  • Grau-Campistany A, Strandberg E, Wadhwani P, Reichert J, Bürck J, Rabanal F, Ulrich AS (2015) Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells (in preparation)

  • Haney EF, Hunter HN, Matsuzaki K, Vogel HJ (2009) Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? Biochim Biophys Acta 1788:1639–1655. doi:10.1016/j.bbamem.2009.01.002

    Article  Google Scholar 

  • Huang HW (2006) Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim Biophys Acta 1758:1292–1302. doi:10.1016/j.bbamem.2006.02.001

    Article  Google Scholar 

  • Ieronimo M, Afonin S, Koch K, Berditsch M, Wadhwani P, Ulrich AS (2010) 19F NMR analysis of the antimicrobial peptide PGLa bound to native cell membranes from bacterial protoplasts and human erythrocytes. J Am Chem Soc 132:8822–8824. doi:10.1021/ja101608z

    Article  Google Scholar 

  • Islami M, Mehrnejad F, Doustdar F, Alimohammadi M, Khadem-Maaref M, Mir-Derikvand M, Taghdir M (2014) Study of orientation and penetration of LAH4 into lipid bilayer membranes: pH and composition dependence. Chem Biol Drug Des 84:242–252. doi:10.1111/cbdd.12311

    Article  Google Scholar 

  • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511. doi:10.1128/CMR.00056-05

    Article  Google Scholar 

  • Koch K, Afonin S, Ieronimo M, Berditsch M, Ulrich AS (2012) Solid-state 19F-NMR of peptides in native membranes. Top Curr Chem 306:89–118. doi:10.1007/128_2011_162

    Article  Google Scholar 

  • Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J, Krzyżewski J, Zwierzchowski L, Bagnicka E (2012) Cathelicidins: family of antimicrobial peptides—a review. Mol Biol Rep 39:10957–10970. doi:10.1007/s11033-012-1997-x

    Article  Google Scholar 

  • Koynova R, Caffrey M (1998) Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta 1376:91–145. doi:10.1016/S0304-4157(98)00006-9

    Article  Google Scholar 

  • Kubyshkin VS, Komarov IV, Afonin S, Mykhailiuk PK, Grage SL, Ulrich AS (2012) Trifluoromethyl-substituted α-amino acids as solid state 19F-NMR labels for structural studies of membrane-bound peptides. In: Gouverneur V, Müller K (eds) Fluorine in pharmaceutical and medicinal chemistry: from biophysical aspects to clinical applications. Imperial College Press, London, pp 91–138

    Chapter  Google Scholar 

  • Lindsey H, Petersen NO, Chan SI (1979) Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Biochim Biophys Acta 555:147–167. doi:10.1016/0005-2736(79)90079-8

    Article  Google Scholar 

  • Mäler L (2012) Solution NMR studies of peptide-lipid interactions in model membranes. Mol Membr Biol 29:155–176. doi:10.3109/09687688.2012.683456

    Article  Google Scholar 

  • Manzini MC, Perez KR, Riske KA, Bozelli JC Jr, Santos TL, da Silva MA, Saraiva GK, Politi MJ, Valente AP, Almeida FC, Chaimovich H, Rodrigues MA, Bemquerer MP, Schreier S, Cuccovia IM (2014) Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Biochim Biophys Acta 1838:1985–1999. doi:10.1016/j.bbamem.2014.04.004

    Article  Google Scholar 

  • Marsh EN, Suzuki Y (2014) Using 19F NMR to probe biological interactions of proteins and peptides. ACS Chem Biol 9:1242–1250. doi:10.1021/cb500111u

    Article  Google Scholar 

  • Matar G, Besson F (2011) Influence of the lipid composition of biomimetic monolayers on the structure and orientation of the gp41 tryptophan-rich peptide from HIV-1. Biochim Biophys Acta 1808:2534–2543. doi:10.1016/j.bbamem.2011.06.003

    Article  Google Scholar 

  • Mecke A, Lee DK, Ramamoorthy A, Orr BG, Banaszak Holl MM (2005) Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophys J 89:4043–4050. doi:10.1529/biophysj.105.062596

    Article  Google Scholar 

  • Muhle-Goll C, Hoffmann S, Afonin S, Grage SL, Polyansky AA, Windisch D, Zeitler M, Bürck J, Ulrich AS (2012) Hydrophobic matching controls the tilt and stability of the dimeric platelet-derived growth factor receptor (PDGFR) β transmembrane segment. J Biol Chem 287:26178–26186. doi:10.1074/jbc.M111.325555

    Article  Google Scholar 

  • Naito A (2009) Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. Solid State Nucl Magn Reson 36:67–76. doi:10.1016/j.ssnmr.2009.06.008

    Article  Google Scholar 

  • Neale C, Hsu JC, Yip CM, Pomès R (2014) Indolicidin binding induces thinning of a lipid bilayer. Biophys J 106:L29–L31. doi:10.1016/j.bpj.2014.02.031

    Article  Google Scholar 

  • Ouellet M, Doucet JD, Voyer N, Auger M (2007) Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study. Biochemistry 46:6597–6606. doi:10.1021/bi0620151

    Article  Google Scholar 

  • Perrin BS Jr, Sodt AJ, Cotten ML, Pastor RW (2014) The curvature induction of surface-bound antimicrobial peptides piscidin 1 and piscidin 3 varies with lipid chain length. J Membr Biol. doi:10.1007/s00232-014-9733-1

    Google Scholar 

  • Petrache HI, Dodd SW, Brown MF (2000) Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys J 79:3172–3192. doi:10.1016/S0006-3495(00)76551-9

    Article  Google Scholar 

  • Schrank E, Wagner GE, Zangger K (2013) Solution NMR studies on the orientation of membrane-bound peptides and proteins by paramagnetic probes. Molecules 18:7407–7435. doi:10.3390/molecules18077407

    Article  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70. doi:10.1016/S0005-2736(99)00200-X

    Article  Google Scholar 

  • Strandberg E, Tiltak D, Ehni S, Wadhwani P, Ulrich AS (2012) Lipid shape is a key factor for membrane interactions of amphipathic helical peptides. Biochim Biophys Acta 1818:1764–1776. doi:10.1016/j.bbamem.2012.02.027

    Article  Google Scholar 

  • Strandberg E, Zerweck J, Wadhwani P, Ulrich AS (2013) Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature. Biophys J 104:L9–L11. doi:10.1016/j.bpj.2013.01.047

    Article  Google Scholar 

  • Su Y, Li S, Hong M (2013) Cationic membrane peptides: atomic-level insight of structure–activity relationships from solid-state NMR. Amino Acids 44:821–833. doi:10.1007/s00726-012-1421-9

  • Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS (2006) Conditions affecting the re-alignment of the antimicrobial peptide PGLa in membranes as monitored by solid state 2H-NMR. Biochim Biophys Acta 1758:1330–1342. doi:10.1016/j.bbamem.2006.02.029

    Article  Google Scholar 

  • Ulrich AS (2005) Solid state 19F-NMR methods for studying biomembranes. Prog NMR Spectr 46:1–21. doi:10.1016/j.pnmrs.2004.11.001

    Article  MathSciNet  Google Scholar 

  • Wadhwani P, Strandberg E, Heidenreich N, Bürck J, Fanghänel S, Ulrich AS (2012a) Self-assembly of flexible β-strands into immobile amyloid-like β-sheets in membranes as revealed by solid-state 19F NMR. J Am Chem Soc 134:6512–6515. doi:10.1021/ja301328f

    Article  Google Scholar 

  • Wadhwani P, Epand RF, Heidenreich N, Bürck J, Ulrich AS (2012b) Membrane-active peptides and the clustering of anionic lipids. Biophys J 103:265–274. doi:10.1016/j.bpj.2012.06.004

    Article  Google Scholar 

  • Wadhwani P, Reichert J, Strandberg E, Bürck J, Misiewicz J, Afonin S, Heidenreich N, Fanghänel S, Mykhailiuk PK, Komarov IV, Ulrich AS (2013) Stereochemical effects on the aggregation and biological properties of the fibril-forming peptide [KIGAKI]3 in membranes. Phys Chem Chem Phys 15:8962–8971. doi:10.1039/c3cp50896j

    Article  Google Scholar 

  • Wadhwani P, Strandberg E, van den Berg J, Mink C, Bürck J, Ciriello RAM, Ulrich AS (2014) Dynamical structure of the short multifunctional peptide BP100 in membranes. Biochim Biophys Acta 1838:940–949. doi:10.1016/j.bbamem.2013.11.001

    Article  Google Scholar 

  • Wadhwani P, Strandberg E, Mink C, Bürck J, van den Berg J, Ciriello RAM, Reichert J, Wacker-Schröder I, Bardají E, Castanho MARB, Ulmschneider JP, Ulrich AS (2015) Multifunctionality of the short membrane-active peptide BP100, and comparison with the Magainin- and TAT families (in preparation)

  • Wang Y, Zhao T, Wei D, Ulrich AS, Strandberg E, Ulmschneider JP (2014) How reliable are molecular dynamics simulations of membrane active antimicrobial peptides? Biochim Biophys Acta 1838:2280–2288. doi:10.1016/j.bbamem.2014.04.009

    Article  Google Scholar 

  • Yang P, Wu FG, Chen Z (2013) Lipid fluid-gel phase transition induced alamethicin orientational change probed by sum frequency generation vibrational spectroscopy. J Phys Chem C Nanomater Interfaces 117:17039–17049. doi:10.1021/jp4047215

    Article  Google Scholar 

  • Yi HY, Chowdhury M, Huang YD, Yu XQ (2014) Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98:5807–5822. doi:10.1007/s00253-014-5792-6

    Article  Google Scholar 

  • Zairi A, Tangy F, Bouassida K, Hani K (2009) Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides-a mini review. J Biomed Biotechnol 2009:452567. doi:10.1155/2009/452567

    Article  Google Scholar 

  • Zhang S, Wu XL, Mehring M (1990) Elimination of ringing effects in multiple-pulse sequences. Chem Phys Lett 173:481–484. doi:10.1016/0009-2614(90)87239-N

    Article  ADS  Google Scholar 

  • Zhou HX, Cross TA (2013) Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 42:361–392. doi:10.1146/annurev-biophys-083012-130326

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge A. Eisele and K. Scheubeck (KIT) for the technical support with peptide synthesis, R. A. M. Ciriello, C. Mink (KIT) for participation in the NMR measurements, P. K. Mykhailiuk and I. V. Komarov (University of Kyiv) for custom-synthesis of the amino acid CF3-Bpg. This research was supported by the DFG-Center for Functional Nanostructures (E1.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne S. Ulrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misiewicz, J., Afonin, S., Grage, S.L. et al. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR. J Biomol NMR 61, 287–298 (2015). https://doi.org/10.1007/s10858-015-9897-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9897-8

Keywords

Navigation