Skip to main content
Log in

Isolation of Escherichia coli Mannitol Permease, EIImtl, Trapped in Amphipol A8-35 and Fluorescein-Labeled A8-35

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Amphipols (APols) are short amphipathic polymers that keep integral membrane proteins water-soluble while stabilizing them as compared to detergent solutions. In the present work, we have carried out functional and structural studies of a membrane transporter that had not been characterized in APol-trapped form yet, namely EIImtl, a dimeric mannitol permease from the inner membrane of Escherichia coli. A tryptophan-less and dozens of single-tryptophan (Trp) mutants of this transporter are available, making it possible to study the environment of specific locations in the protein. With few exceptions, the single-Trp mutants show a high mannitol-phosphorylation activity when in membranes, but, as variance with wild-type EIImtl, some of them lose most of their activity upon solubilization by neutral (PEG- or maltoside-based) detergents. Here, we present a protocol to isolate these detergent-sensitive mutants in active form using APol A8-35. Trapping with A8-35 keeps EIImtl soluble and functional in the absence of detergent. The specific phosphorylation activity of an APol-trapped Trp-less EIImtl mutant was found to be ~3× higher than the activity of the same protein in dodecylmaltoside. The preparations are suitable both for functional and for fluorescence spectroscopy studies. A fluorescein-labeled version of A8-35 has been synthesized and characterized. Exploratory studies were conducted to examine the environment of specific Trp locations in the transmembrane domain of EIImtl using Trp fluorescence quenching by water-soluble quenchers and by the fluorescein-labeled APol. This approach has the potential to provide information on the transmembrane topology of MPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

2D:

Two dimensional

A8-35:

Poly(sodium acrylate) based amphipol comprising 35 % of free carboxylate, 25 % of octyl chains, 40 % of isopropyl groups, and whose weight average molar mass is ~4.3 kDa

A8-75:

Poly(sodium acrylate) based amphipol comprising 75 % of free carboxylate, 25 % of octylchains, whose weight average molar mass is ~4 kDa

APol:

Amphipol

Btot :

Total amount of binding sites

C10E5 :

Decylpentaethylene glycol ether

C10-PEG:

Decylpoly(ethyleneglycol) 300

CBB:

Coomassie brillant blue

DABCO:

1,4-Diazabicyclo[2.2.2]octane

DCI:

N,N-Dicyclohexylcarbodiimide

DMF:

Dimethylformamide

DOC:

Deoxycholate

DTT:

Dithiothreitol

EIImtl :

Dimeric mannitol permease from the inner membrane of Escherichia coli

FAPol:

Fluorescently-labeled A8-35

FAPolfluo :

Fluorescein-labeled A8-35

FITC:

Fluorescein isothiocyanate

FRET:

Förster resonance energy transfer

IIAmtl, IIBmtl :

Cytoplasmic A and B domains of EIImtl, respectively

IICmtl :

Transmembrane C domain of EIImtl

ISO:

Inside-out

KD :

Dissociation constant

MP:

Membrane protein

NBD:

7-Nitrobenz-2-oxa-1,3-diazol-4-yl

NTA:

Nitrilotriacetic acid

PAA:

Poly(acrylic acid)

SDS-PAGE:

Sodium dodecylsulfate-polyacrylamide gel electrophoresis

TL:

Trp-less EIImtl, in which the four native Trp residues are replaced by Phe

TMHI:

The first putative transmembrane helix of IICmtl

tOmpA:

The transmembrane domain of outer membrane protein A from E. coli

Trp:

Tryptophan

UAPol:

A8-35 grafted with an amino arm

W36, W37, W38, W167, and W188:

Single-Trp-containing EIImtl mutants based on Trp-less EIImtl

wt EIImtl :

Wild-type EIImtl, with Trp residues at positions 30, 42, 109, and 117

References

  • Althoff T, Mills DJ, Popot J-L, Kühlbrandt W (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664

    Article  CAS  Google Scholar 

  • Banères J-L, Popot J-L, Mouillac B (2011) New advances in production and functional folding of G protein-coupled receptors. Trends Biotechnol 29:314–322

    Article  Google Scholar 

  • Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–402

    Article  CAS  Google Scholar 

  • Broos J, ter Veld F, Robillard GT (1999) Membrane protein–ligand interactions in Escherichia coli vesicles and living cells monitored via a biosynthetically incorporated tryptophan analogue. Biochemistry 38:9798–9803

    Article  CAS  Google Scholar 

  • Broos J, Strambini GB, Gonnelli M, Vos EPP, Koolhof M, Robillard GT (2000) Sensitive monitoring of the dynamics of a membrane-bound transport protein by tryptophan phosphorescence spectroscopy. Biochemistry 39:10877–10883

    Article  CAS  Google Scholar 

  • Broos J, Gabellieri E, van Boxel GI, Jackson JB, Strambini GB (2003) Tryptophan phosphorescence spectroscopy reveals that a domain in the NAD(H)-binding component (dI) of transhydrogenase from Rhodospirillum rubrum has an extremely rigid and conformationally homogeneous protein core. J Biol Chem 278:47578–47584

    Article  CAS  Google Scholar 

  • Broos J, Maddalena F, Hesp BH (2004) In vivo synthesized proteins with monoexponential fluorescence decay kinetics. J Am Chem Soc 126:22–23

    Article  CAS  Google Scholar 

  • Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Popot J-L, Guittet E (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by hetero-nuclear dipole-to-dipole cross-relaxation. J Magn Res 197:91–95

    Article  CAS  Google Scholar 

  • Champeil P, Menguy T, Tribet C, Popot J-L, le Maire M (2000) Interaction of amphipols with the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 275:18623–18637

    Article  CAS  Google Scholar 

  • Charvolin D, Picard M, Huang L-S, Berry EA, Popot J-L (2014) Solution behavior and crystallization of cytochrome bc 1 in the presence of amphipols. J Membr Biol. doi:10.1007/s00232-014-9694-4

    Article  CAS  Google Scholar 

  • Dahmane T, Rappaport F, Popot J-L (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence and absence of lipids. Functional consequences. Eur Biophys J 42:85–101

    Article  CAS  Google Scholar 

  • Dijkstra DS, Broos J, Robillard GT (1996) Membrane proteins and impure detergents: procedures to purify membrane proteins to a degree suitable for tryptophan fluorescence spectroscopy. Anal Biochem 240:142–147

    Article  CAS  Google Scholar 

  • Etzkorn M, Raschle T, Hagn F, Gelev V, Rice AJ, Walz T, Wagner G (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21:394–401

    Article  CAS  Google Scholar 

  • Etzkorn M, Zoonens M, Catoire LJ, Popot J-L, Hiller S (2014) How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus. J Membr Biol. doi:10.1007/s00232-014-9657-9

    Article  CAS  Google Scholar 

  • Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406

    Article  CAS  Google Scholar 

  • Giusti F, Rieger J, Catoire L, Qian S, Calabrese AN, Watkinson TG, Pembouong G, Casiraghi M, Radford SE, Ashcroft AE, Popot J-L (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol. doi:10.1007/s00232-014-9656-x

    Article  CAS  Google Scholar 

  • Gohon Y, Popot J-L (2003) Membrane protein–surfactant complexes. Curr Opin Colloid Interface Sci 8:15–22

    Article  CAS  Google Scholar 

  • Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334

    Article  CAS  Google Scholar 

  • Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290

    Article  CAS  Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok R, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537

    Article  CAS  Google Scholar 

  • Huynh KW, Cohen MR, Moiseenkova-Bell VY (2014) Application of amphipols for structure-functional analysis of TRP channels. J Membr Biol. doi:10.1007/s00232-014-9684-6

    Article  CAS  Google Scholar 

  • Koning RI, Keegstra W, Oostergetel GT, Schuurman-Wolters G, Robillard GT, Brisson A (1999) The 5 Å projection structure of the transmembrane domain of the mannitol transporter enzyme II. J Mol Biol 287:845–851

    Article  CAS  Google Scholar 

  • Le Bon C, Popot J-L, Giusti F (2014) Labeling and functionalizing amphipols for biological applications. J Membr Biol. doi:10.1007/s00232-014-9655-y

    Article  CAS  Google Scholar 

  • le Maire M, Champeil P, Møller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111

    Article  Google Scholar 

  • Legler PM, Cai ML, Peterkofsky A, Clore GM (2004) Three-dimensional solution structure of the cytoplasmic B domain of the mannitol transporter II(mtl) of the Escherichia coli phosphotransferase system. J Biol Chem 279:39115–39121

    Article  CAS  Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112

    Article  CAS  Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2014) Single particle electron cryo-microscopy of a mammalian ion channel. Curr Opin Struct Biol 27:1–7

    Article  CAS  Google Scholar 

  • Liu TQ, Callis PR, Hesp BH, de Groot M, Buma WJ, Broos J (2005) Ionization potentials of fluoroindoles and the origin of nonexponential tryptophan fluorescence decay in proteins. J Am Chem Soc 127:4104–4113

    Article  CAS  Google Scholar 

  • Lolkema JS, Kuiper H, ten Hoeve Duurkens RH, Robillard GT (1993) Mannitol-specific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli: physical size of enzyme IImtl and its domains IIBA and IIC in the active state. Biochemistry 32:1396–1400

    Article  CAS  Google Scholar 

  • Martinez KL, Gohon Y, Corringer P-J, Tribet C, Mérola F, Changeux J-P, Popot J-L (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett 528:251–256

    Article  CAS  Google Scholar 

  • Mary S, Damian M, Rahmeh R, Mouillac B, Marie J, Granier S, Banères J-L (2014) Amphipols in G protein-coupled receptor pharmacology: what are they good for? J Membr Biol. doi:10.1007/s00232-014-9665-9

    Article  CAS  Google Scholar 

  • Opačić M, Vos EPP, Hesp BH, Broos J (2010) Localization of the substrate binding site in the homodimeric mannitol transporter, EIImtl, of Escherichia coli. J Biol Chem 285:25324–25331

    Article  Google Scholar 

  • Opačić M, Hesp BH, Fusetti F, Dijkstra BW, Broos J (2012) Structural investigation of the transmembrane C domain of the mannitol permease from Escherichia coli using 5-FTrp fluorescence spectroscopy. Biochim Biophys Acta 1818:861–868

    Article  Google Scholar 

  • Perlmutter JD, Drasler WJ, Xie W, Gao J, Popot J-L, Sachs JN (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing poly-mer. Langmuir 27:10523–10537

    Article  CAS  Google Scholar 

  • Perlmutter JD, Popot J-L, Sachs JN (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J Membr Biol. doi:10.1007/s00232-014-9690-8

    Article  CAS  Google Scholar 

  • Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot J-L, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869

    Article  CAS  Google Scholar 

  • Pocanschi C, Popot J-L, Kleinschmidt JH (2013) Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur Biophys J 42:103–118

    Article  CAS  Google Scholar 

  • Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three non-conventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775

    Article  CAS  Google Scholar 

  • Popot J-L, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flötenmeyer M, Giusti F, Gohon Y, Hervé P, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574

    Article  CAS  Google Scholar 

  • Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Rappaport F, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408

    Article  CAS  Google Scholar 

  • Robillard GT, Blaauw M (1987) Enzyme II of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: protein-protein and protein-phospholipid interactions. Biochemistry 26:5796–5803

    Article  CAS  Google Scholar 

  • Robillard GT, Broos J (1999) Structure/function studies on the bacterial carbohydrate transporters, enzymes II, of the phosphoenolpyruvate-dependent phosphotransferase system. Biochim Biophys Acta 1422:73–104

    Article  CAS  Google Scholar 

  • Robillard GT, Boer H, van Weeghel RP, Wolters G, Dijkstra A (1993) Expression and characterization of a structural and functional domain of the mannitol-specific transport protein involved in the coupling of mannitol transport and phosphorylation in the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Biochemistry 32:9553–9562

    Article  CAS  Google Scholar 

  • Rosenbusch JP (2001) Stability of membrane proteins: relevance for the selection of appropriate methods for high-resolution structure determinations. J Struct Biol 136:144–157

    Article  CAS  Google Scholar 

  • Seybold PG, Gouterman M, Callis J (1969) Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes. Photochem Photobiol 9:229–242

    Article  CAS  Google Scholar 

  • Sugiyama JE, Mahmoodian S, Jacobson GR (1991) Membrane topology analysis of Escherichia coli mannitol permease by using a nested-deletion method to create mtlA-phoA fusions. Proc Natl Acad Sci USA 88:9603–9607

    Article  CAS  Google Scholar 

  • Tehei M, Perlmutter J, Giusti F, Sachs J, Zaccai G, Popot J-L (2014) Thermal fluctuations in amphipol A8-35 measured by neutron scattering. J Membr Biol (submitted)

  • Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050

    Article  CAS  Google Scholar 

  • Tribet C, Diab C, Dahmane T, Zoonens M, Popot J-L, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634

    Article  CAS  Google Scholar 

  • Tsybovsky Y, Orban T, Molday RS, Taylor D, Palczewski K (2013) Molecular organization and ATP-induced conformational changes of ABCA4, the photoreceptor-specific ABC transporter. Structure 21:854–860

    Article  CAS  Google Scholar 

  • van Montfort RLM, Pijning T, Kalk KH, Hangyi I, Kouwijzer MLCE, Robillard GT, Dijkstra BW (1998) The structure of the Escherichia coli phosphotransferase IIA(mannitol) reveals a novel fold with two conformations of the active site. Structure 6:377–388

    Article  Google Scholar 

  • Veldhuis G (2006) Mechanism of the mannitol transporter from Escherichia coli—substrate probing and oligomeric structure. Ph.D. Thesis, University of Groningen, pp 77–89

  • Veldhuis G, Broos J, Poolman B, Scheek RM (2005a) Stoichiometry and substrate affinity of the mannitol transporter, Enzymell(mtl), from Escherichia coli. Biophys J 89:201–210

    Article  CAS  Google Scholar 

  • Veldhuis G, Gabellieri E, Vos EPP, Poolman B, Strambini GB, Broos J (2005b) Substrate-induced conformational changes in the membrane-embedded IICmtl-domain of the mannitol permease from Escherichia coli, EnzymeII(mtl), probed by tryptophan phosphorescence spectroscopy. J Biol Chem 280:35148–35156

    Article  CAS  Google Scholar 

  • Vervoort EB, Bultema JB, Schuurman-Wolters GK, Geertsma ER, Broos J, Poolman B (2005) The first cytoplasmic loop of the mannitol permease from Escherichia coli is accessible for sulfhydryl reagents from the periplasmic side of the membrane. J Mol Biol 346:733–743

    Article  CAS  Google Scholar 

  • Vos EPP, Bokhove M, Hesp BH, Broos J (2009a) Structure of the cytoplasmic loop between putative helices II and III of the mannitol permease of Escherichia coli: a tryptophan and 5-fluorotryptophan spectroscopy study. Biochemistry 48:5284–5290

    Article  CAS  Google Scholar 

  • Vos EPP, ter Horst R, Poolman B, Broos J (2009b) Domain complementation studies reveal residues critical for the activity of the mannitol permease from Escherichia coli. Biochim Biophys Acta 1788:581–586

    Article  CAS  Google Scholar 

  • Zoonens M, Popot J-L (2014) Amphipols for each season. J Membr Biol. doi:10.1007/s00232-014-9666-8

    Article  CAS  Google Scholar 

  • Zoonens M, Catoire LJ, Giusti F, Popot J-L (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898

    Article  CAS  Google Scholar 

  • Zoonens M, Giusti F, Zito F, Popot J-L (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404

    Article  CAS  Google Scholar 

  • Zoonens M, Zito F, Martinez KL, Popot J-L (2014) Amphipols: a general introduction and some protocols. In: Mus-Veteau I (ed) Membrane protein production for structural analysis. Springer

Download references

Acknowledgments

This project was supported by the French Centre National de la Recherche Scientifique, by University Paris-7, and by the “Initiative d’Excellence” program from the French State (Grant “DYNAMO”, ANR-11-LABX-0011-01). M.O. was the recipient of a fellowship from the European International Training Network SBMPs (Structural Biology of Membrane Proteins).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Luc Popot or Jaap Broos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opačić, M., Giusti, F., Popot, JL. et al. Isolation of Escherichia coli Mannitol Permease, EIImtl, Trapped in Amphipol A8-35 and Fluorescein-Labeled A8-35. J Membrane Biol 247, 1019–1030 (2014). https://doi.org/10.1007/s00232-014-9691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9691-7

Keywords

Navigation