Skip to main content
Log in

Labeling and Functionalizing Amphipols for Biological Applications

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Amphipols (APols) are short amphipathic polymers developed as an alternative to detergents for handling membrane proteins (MPs) in aqueous solution. MPs are, as a rule, much more stable following trapping with APols than they are in detergent solutions. The best-characterized APol to date, called A8-35, is a mixture of short-chain sodium polyacrylates randomly derivatized with octylamine and isopropylamine. Its solution properties have been studied in detail, and it has been used extensively for biochemical and biophysical studies of MPs. One of the attractive characteristics of APols is that it is relatively easy to label them, isotopically or otherwise, without affecting their physical-chemical properties. Furthermore, several variously modified APols can be mixed, achieving multiple functionalization of MP/APol complexes in the easiest possible manner. Labeled or tagged APols are being used to study the solution properties of APols, their miscibility, their biodistribution upon injection into living organisms, their association with MPs and the composition, structure and dynamics of MP/APol complexes, examining the exchange of surfactants at the surface of MPs, labeling MPs to follow their distribution in fractionation experiments or to immobilize them, increasing the contrast between APols and solvent or MPs in biophysical experiments, improving NMR spectra, etc. Labeling or functionalization of APols can take various courses, each of which has its specific constraints and advantages regarding both synthesis and purification. The present review offers an overview of the various derivatives of A8-35 and its congeners that have been developed in our laboratory and discusses the pros and cons of various synthetic routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A8-35:

Poly(sodium acrylate) based amphipol comprising 35 % of free carboxylate, 25 % of octyl chains, 40 % of isopropyl groups, and whose number-average molar mass is ~4.3 kDa

A8-75:

Poly(sodium acrylate) based amphipol comprising 75 % of free carboxylate, 25 % of octylchains, and whose number-average molar mass is ~4 kDa

APol:

Amphipol

AUC:

Analytical ultracentrifugation

BAPol:

Biotinylated A8-35

Ð:

Molar mass dispersity

DAPol:

A8-35 with deuterated octylamine and isopropylamine side chains

DCI:

N,N′-dicyclohexylcarbodiimide

DCU:

Dicyclohexylurea

DTT:

Dithiothreitol

EDC:

Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride

FAPol:

Fluorescently labeled A8-35

FAPolAF647 :

Alexa Fluor 647-labeled A8-35

FAPolNBD :

Nitrobenzoxadiazole-labeled A8-35

FAPolrhod :

Rhodamine-labeled A8-35

FRET:

Förster resonance energy transfer

HAPol:

Hydrogenated A8-35

HMPA:

Hydrophobically modified poly(acrylic acid)

HMPAS:

HMPA synthesis

His6PEG:

N-(penta(histidyl)histidinamide)-8-amino-3,6-dioxa-octanamide

His-tag:

Hexahistidine tag

HistAPol:

Hexahistidine tag-carrying A8-35

HOBt:

1-N-hydroxybenzotriazole

IMAC:

Immobilized metal ion affinity chromatography

ImidAPol:

Imidazole-carrying A8-35

INS:

Inelastic neutron scattering

M n〉:

Number-average molar mass

MP:

Membrane protein

NBD:

7-Nitrobenz-2-oxa-1,3-diazol-4-yl

NHS:

N-hydroxysuccinimide

NOE:

Nuclear Overhauser effect

NTA:

Nitrilotriacetic acid

ODN:

Oligodeoxynucleotide

OligAPol:

ODN-carrying A8-35

PAA:

Poly(acrylic acid)

perDAPol:

Perdeuterated A8-35

SANS:

Small angle neutron scattering

SAPol:

Sulfonated amphipol derived from A8-75, comprising 40 % of taurine moieties

SPR:

Surface plasmon resonance

TES:

Triethylsilane

TFA:

Trifluoroacetic acid

ThiAPol:

Thiol-carrying APol

Tsv:

Tosvinyl group

UAPol:

Universal amphipol

UAPol-NH2 :

Amine-carrying A8-35

References

  • Alemdaroglu FE, Herrmann A (2007) DNA meets synthetic polymers—highly versatile hybrid materials. Org Biomol Chem 5:1311–1320

    CAS  PubMed  Google Scholar 

  • Althoff T, Mills DJ, Popot J-L, Kühlbrandt W (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andreu D, Albericio F, Solé NA, Munson MC, Ferrer M, Barany G (1994) Formation of disulfide bonds in synthetic peptides and proteins. Methods Mol Biol, Springer, pp 91–169

  • Arjona O, Medel R, Rojas J, Costa AM, Vilarrasa J (2003) Chemoselective protection of thiols versus alcohols and phenols. The Tosvinyl group. Tetrahedron Lett 44:6369–6373

    CAS  Google Scholar 

  • Basit H, Sharma S, Van der Heyden A, Gondran C, Breyton C, Dumy P, Winnik FM, Labbé P (2012) Amphipol mediated surface immobilization of FhuA: a platform for label-free detection of the bacteriophage protein pb5. Chem Commun 48:6037–6039

    CAS  Google Scholar 

  • Bazzacco P, Sharma KS, Durand G, Giusti F, Ebel C, Popot J-L, Pucci B (2009) Trapping and stabilization of integral membrane proteins by hydrophobically grafted glucose-based telomers. Biomacromolecules 10:3317–3326

    CAS  PubMed  Google Scholar 

  • Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères J-L, Durand G, Zito F, Pucci B, Popot J-L (2012) Non-ionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution NMR. Biochemistry 51:1416–1430

    Article  CAS  PubMed  Google Scholar 

  • Bernkop-Schnurch A, Schwarz V, Steininger S (1999) Polymers with thiol groups: a new generation of mucoadhesive polymers? Pharm Res 16:876–881

    CAS  PubMed  Google Scholar 

  • Bette-Bobillo P, Bienvenue A, Broquet C, Maurin L (1985) Synthesis and characterisation of a radioiodinated, photoreactive and physiologically active analog of platelet activating factor. Chem Phys Lipids 37:215–226

    CAS  PubMed  Google Scholar 

  • Blackburn S, Lee GR (1956) The reaction of wool keratin with alkali. Biochim Biophys Acta 19:505–512

    CAS  PubMed  Google Scholar 

  • Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Popot J-L, Guittet E (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. J Magn Res 197:91–95

    CAS  Google Scholar 

  • Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot J-L, Guittet E, Banères J-L (2010a) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132:9049–9057

    CAS  PubMed  Google Scholar 

  • Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Guittet E, Popot J-L (2010b) Solution NMR mapping of water-accessible residues in the transmembrane β-barrel of OmpX. Eur Biophys J 39:623–630

    CAS  PubMed  Google Scholar 

  • Champeil P, Menguy T, Tribet C, Popot J-L, le Maire M (2000) Interaction of amphipols with the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 275:18623–18637

    Article  CAS  PubMed  Google Scholar 

  • Charvolin D, Perez J-B, Rouvière F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot J-L (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci USA 106:405–410

    Article  CAS  PubMed  Google Scholar 

  • Charvolin D, Picard M, Huang L-S, Berry EA, Popot J-L (2014) Solution behavior and crystallization of cytochrome bc 1 in the presence of amphipols (submitted for publication)

  • Collman JP, Devaraj NK, Chidsey CED (2004) “Clicking” functionality onto electrode surfaces. Langmuir 20:1051–1053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahmane T, Damian M, Mary S, Popot J-L, Banères J-L (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521

    CAS  PubMed  Google Scholar 

  • Dahmane T, Giusti F, Catoire LJ, Popot J-L (2011) Sulfonated amphipols: synthesis, properties and applications. Biopolymers 95:811–823

    CAS  PubMed  Google Scholar 

  • Dahmane T, Rappaport F, Popot J-L (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence and absence of lipids. Functional consequences. Eur Biophys J 42:85–101

    CAS  PubMed  Google Scholar 

  • Danehy JP, Hunter WE (1967) The alkaline decomposition of organic disulfides. II. Alternative pathways as determined by structure. J Org Chem 32:2047–2053

    CAS  Google Scholar 

  • Danehy JP, Kreuz JA (1961) The alkaline decomposition of organic disulfides. I. Some dithiodicarboxylic acids. J Am Chem Soc 83:1109–1113

    CAS  Google Scholar 

  • Davis BG, Khumtaveeporn K, Bott RR, Jones JB (1999) Altering the specificity of subtilisin Bacillus lentus through the introduction of positive charge at single amino acid sites. Bioorg Med Chem 7:2303–2311

    CAS  PubMed  Google Scholar 

  • Delair T, Badey B, Charles MH, Laayoun A, Domard A, Pichot C, Mandrand B (1997) Conjugation of nucleic acid probes to 6-aminoglucose-based homo- and copolymers. 2. Application to diagnostics. Polym Adv Technol 8:545–555

    CAS  Google Scholar 

  • Della Pia EA, Holm J, Lloret N, Le Bon C, Popot J-L, Zoonens M, Nygård J, Martinez KL (2014a) A step closer to membrane protein multiplexed nano-arrays using biotin-doped polypyrrole. ACS Nano 8:1844–1853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Della Pia EA, Westh Hansen R, Zoonens M, Martinez KL (2014b) Amphipols: a versatile toolbox suitable for applications of membrane proteins in synthetic biology (submitted for publication)

  • Diab C, Tribet C, Gohon Y, Popot J-L, Winnik FM (2007a) Complexation of integral membrane proteins by phosphorylcholine-based amphipols. Biochim Biophys Acta 1768:2737–2747

    CAS  PubMed  Google Scholar 

  • Diab C, Winnik FM, Tribet C (2007b) Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols). Langmuir 23:3025–3035

    CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  PubMed  Google Scholar 

  • Etzkorn M, Zoonens M, Catoire LJ, Popot J-L, Hiller S (2014) How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus. J Membrane Biol (in press)

  • Feinstein HE, Tifrea D, Popot J-L, de la Maza LM, Cocco MJ (2014) Amphipols stabilize the Chlamydia major outer membrane protein vaccine formulation (submitted for publication)

  • Fernandez A, Le Bon C, Baumlin N, Giusti F, Crémel G, Popot J-L, Bagnard D (2014) In vivo characterization of the biodistribution profile of amphipols (submitted for publication)

  • Ferrandez Y, Dezi M, Bosco M, Urvoas A, Valério M, Le Bon C, Giusti F, Broutin I, Durand G, Polidori A, Popot J-L, Picard M, Minard P (2014) Amphipol-mediated screening of molecular orthoses specific for membrane protein targets (submitted for publication)

    CAS  PubMed  Google Scholar 

  • Ferraton N, Delair T, Laayoun A, Cros P, Mandrand B (1997) Covalent immobilization of nucleic acid probes onto reactive synthetic polymers. J Appl Polym Sci 66:233–242

    CAS  Google Scholar 

  • Frey A, Neutra MR, Robey FA (1997) Peptomer aluminum oxide nanoparticle conjugates as systemic and mucosal vaccine candidates: synthesis and characterization of a conjugate derived from the C4 domain of HIV-1(MN) gp120. Bioconjugate Chem 8:424–433

    CAS  Google Scholar 

  • Gauvreau V, Chevallier P, Vallières K, Petitclerc E, Gaudreault RC, Laroche G (2004) Engineering surfaces for bioconjugation: developing strategies and quantifying the extent of the reactions. Bioconjugate Chem 15:1146–1156

    CAS  Google Scholar 

  • Gielens C, De Geest N, Xin X-Q, Devreese B, Van Beeumen J, Préaux JG (1997) Evidence for a cysteine-histidine thioether bridge in functional units of molluscan haemocyanins and location of the disulfide bridges in functional units d and g of the β c-haemocyanin of Helix pomatia. Eur J Biochem 248:879–888

    CAS  PubMed  Google Scholar 

  • Giusti F, Popot J-L, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380

    CAS  PubMed  Google Scholar 

  • Giusti F, Kessler P, Westh Hansen R, Della Pia EA, Le Bon C, Mourier G, Popot JL, Martinez KL, Zoonens M (2014a) Synthesis of polyhistidine- or imidazole-bearing amphipols and their use for immobilized metal affinity chromatography and surface plasmon resonance studies of membrane proteins (in preparation)

  • Giusti F, Rieger J, Catoire L, Qian S, Calabrese AN, Watkinson TG, Radford SE, Ashcroft AE, Popot J-L (2014b) Synthesis, characterization and applications of a perdeuterated amphipol. J Membrane Biol (in press)

  • Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334

    CAS  PubMed  Google Scholar 

  • Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290

    CAS  PubMed  Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok R, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorzelle BM, Hoffman AK, Keyes MH, Gray DN, Ray DG, Sanders CR II (2002) Amphipols can support the activity of a membrane enzyme. J Am Chem Soc 124:11594–11595

    CAS  PubMed  Google Scholar 

  • Greene TW, Wuts PGM (2002) Protection for the thiol group. Protective groups in organic synthesis. Wiley, Hoboken, pp 454–493

    Google Scholar 

  • Grover GN, Alconcel SNS, Matsumoto NM, Maynard HD (2009) Trapping of thiol-terminated acrylate polymers with divinyl sulfone to generate well-defined semitelechelic Michael acceptor polymers. Macromolecules 42:7657–7663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen RE, Winther JR (2009) An introduction to methods for analyzing thiols and disulfides: reactions, reagents, and practical considerations. Anal Biochem 394:147–158

    CAS  PubMed  Google Scholar 

  • Harding RL, Henshaw J, Tilling J, Bugg TDH (2002) Thioester analogues of peptidoglycan fragment MurNAc-l-Ala-gamma-d-Glu as substrates for peptidoglycan hydrolase MurNAc- l-Ala amidase. J Chem Soc Perkin Trans 1:1714–1722

    Google Scholar 

  • Humphrey RE, Potter JL (1965) Reduction of disulfides with tributylphosphine. Anal Chem 37:164–165

    CAS  Google Scholar 

  • Huynh KW, Cohen MR, Moiseenkova-Bell VY (2014) Application of amphipols for structure-functional analysis of TRP channels (submitted for publication)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Javakhishvili I, Hvilsted S (2009) Gold nanoparticles protected with thiol-derivatized amphiphilic poly(epsilon-caprolactone)-β-poly(acrylic acid). Biomacromolecules 10:74–81

    CAS  PubMed  Google Scholar 

  • Jeong JH, Kim SH, Kim SW, Park TG (2005) Polyelectrolyte complex micelles composed of c-raf antisense oligodeoxynucleotide-poly(ethylene glycol) conjugate and poly(ethylenimine): effect of systemic administration on tumor growth. Bioconjugate Chem 16:1034–1037

    CAS  Google Scholar 

  • Kast CE, Bernkop-Schnurch A (2001) Thiolated polymers-thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 22:2345–2352

    CAS  PubMed  Google Scholar 

  • Kikuzawa A, Kida T, Akashi M (2007) Synthesis of stimuli-responsive cyclodextrin derivatives and their inclusion ability control by ring opening and closing reactions. Org Lett 9:3909–3912

    CAS  PubMed  Google Scholar 

  • Klammt C, Perrin M-H, Maslennikov I, Renault L, Krupa M, Kwiatkowski W, Stahlberg H, Vale W, Choe S (2011) Polymer-based cell-free expression of ligand-binding family B G-protein coupled receptors without detergents. Prot Sci 20:1030–1041

    CAS  Google Scholar 

  • Knowles TJ, Finka R, Smith C, Lin Y-P, Dafforn T, Overduin M (2009) Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131:7484–7485

    CAS  PubMed  Google Scholar 

  • Krieg AM (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5:471–484

    CAS  PubMed  Google Scholar 

  • Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549

    CAS  PubMed  Google Scholar 

  • Le Bon C, Della Pia EA, Giusti F, Lloret N, Zoonens M, Martinez KL, Popot J-L (2014) Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acids Res (accepted for publication)

  • Long AR, O’Brien CC, Malhotra K, Schwall CT, Albert AD, Watts A, Alder NN (2013) A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC Biotechnol 13:41. doi:10.1186/1472-6750-13-41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magny B, Lafuma F, Iliopoulos I (1992) Determination of microstructure of hydrophobically modified water-soluble polymers by 13C NMR. Polymer 33:3151–3154

    CAS  Google Scholar 

  • Martinez KL, Gohon Y, Corringer P-J, Tribet C, Mérola F, Changeux J-P, Popot J-L (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett 528:251–256

    CAS  PubMed  Google Scholar 

  • Morishima Y, Nomura S, Ikeda T, Seki M, Kamachi M (1995) Characterization of unimolecular micelles of random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and methacrylamides bearing bulky hydrophobic substituents. Macromolecules 28:2874–2881

    CAS  Google Scholar 

  • Murphy WL, Mercurius KO, Koide S, Mrksich M (2004) Substrates for cell adhesion prepared via active site-directed immobilization of a protein domain. Langmuir 20:1026–1030

    CAS  PubMed  Google Scholar 

  • Nagy JK, Kuhn Hoffmann A, Keyes MH, Gray DN, Oxenoid K, Sanders CR (2001) Use of amphipathic polymers to deliver a membrane protein to lipid bilayers. FEBS Lett 501:115–120

    CAS  PubMed  Google Scholar 

  • Nicolet BH (1931) The mechanism of sulfur lability in cysteine and its derivatives. I. Some thio ethers readily split by alkali. J Am Chem Soc 53:3066–3072

    CAS  Google Scholar 

  • Oishi M, Hayama T, Akiyama Y, Takae S, Harada A, Yarnasaki Y, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K (2005) Supramolecular assemblies for the cytoplasmic delivery of antisense oligodeoxynucleotide: polylon complex (PIC) micelles based on poly(ethylene glycol)-SS-oligodeoxynucleotide conjugate. Biomacromolecules 6:2449–2454

    CAS  PubMed  Google Scholar 

  • Opačić M, Popot J-L, Durand G, Bosco M, Polidori A, Croce R (2014) Amphipols and photosynthetic light-harvesting pigment-protein complexes (submitted for publication)

    PubMed  Google Scholar 

  • Perlmutter JD, Drasler WJ, Xie W, Gao J, Popot J-L, Sachs JN (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer. Langmuir 27:10523–10537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perlmutter JD, Popot J-L, Sachs JN (2014) Molecular dynamics simulations of a membrane protein/amphipol complex (submitted for publication)

  • Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot J-L, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869

    CAS  PubMed  Google Scholar 

  • Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, Popot J-L, Catoire LJ (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and limitations as compared to other solubilizing media (submitted for publication)

  • Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three non-conventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775

    CAS  PubMed  Google Scholar 

  • Popot J-L, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flötenmeyer M, Giusti F, Gohon Y, Hervé P, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574

    CAS  PubMed  Google Scholar 

  • Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Rappaport F, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408

    CAS  PubMed  Google Scholar 

  • Prata C, Giusti F, Gohon Y, Pucci B, Popot J-L, Tribet C (2001) Non-ionic amphiphilic polymers derived from tris(hydroxymethyl)-acrylamidomethane keep membrane proteins soluble and native in the absence of detergent. Biopolymers 56:77–84

    CAS  Google Scholar 

  • Rajesh S, Knowles TJ, Overduin M (2011) Production of membrane proteins without cells or detergents. New Biotech 28:250–254

    CAS  Google Scholar 

  • Ringsdorf H, Venzmer J, Winnik FM (1991) Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides). Macromolecules 24:1678–1686

    CAS  Google Scholar 

  • Roberts C, Chen C, Mrksich M, Martichonok V, Ingber DE, Whitesides GM (1998) Using mixed self-assembled monolayers presenting RGD and (EG)(3)OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces. J Am Chem Soc 120:6548–6555

    CAS  Google Scholar 

  • Roth PJ, Jochum FD, Zentel R, Theato P (2010) Synthesis of hetero-telechelic alpha, omega bio-functionalized polymers. Biomacromolecules 11:238–244

    CAS  PubMed  Google Scholar 

  • Sanders CR, Hoffmann AK, Gray DN, Keyes MH, Ellis CD (2004) French swimwear for membrane proteins. ChemBioChem 5:423–426

    CAS  PubMed  Google Scholar 

  • Sauer AM, Schlossbauer A, Ruthardt N, Cauda V, Bein T, Brauchle C (2010) Role of endosomal escape for disulfide-based drug delivery from colloidal mesoporous silica evaluated by live-cell imaging. Nano Lett 10:3684–3691

    CAS  PubMed  Google Scholar 

  • Sharma KS, Durand G, Giusti F, Olivier B, Fabiano A-S, Bazzacco P, Dahmane T, Ebel C, Popot J-L, Pucci B (2008) Glucose-based amphiphilic telomers designed to keep membrane proteins soluble in aqueous solutions: synthesis and physicochemical characterization. Langmuir 24:13581–13590

    CAS  PubMed  Google Scholar 

  • Sharma KS, Durand G, Gabel F, Bazzacco P, Le Bon C, Billon-Denis E, Catoire LJ, Popot J-L, Ebel C, Pucci B (2012) Non-ionic amphiphilic homopolymers: synthesis, solution properties, and biochemical validation. Langmuir 28:4625–4639

    CAS  PubMed  Google Scholar 

  • Stefano JE, Hou LH, Honey D, Kyazike J, Park A, Zhou Q, Pan CQ, Edmunds T (2009) In vitro and in vivo evaluation of a non-carbohydrate targeting platform for lysosomal proteins. J Controlled Release 135:113–118

    CAS  Google Scholar 

  • Takei YG, Aoki T, Sanui K, Ogata N, Okano T, Sakurai Y (1993) Temperature-responsive bioconjugates. 1. Synthesis of temperature-responsive oligomers with react-ive end groups and their coupling to biomolecules. Bioconjugate Chem 4:42–46

    CAS  Google Scholar 

  • Tehei M, Giusti F, Popot J-L, Zaccai G (2014) Thermal fluctuations in amphipol A8-35 measured by neutron scattering. (submitted for publication)

  • Terrettaz S, Ulrich WP, Vogel H, Hong Q, Dover LG, Lakey JH (2002) Stable self-assembly of a protein engineering scaffold on gold surfaces. Protein Sci 11:1917–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tifrea DF, Sun G, Pal S, Zardeneta G, Cocco MJ, Popot J-L, de la Maza LM (2011) Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine 29:4623–4631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tifrea D, Pal S, Cocco MJ, Popot J-L, de la Maza LM (2014) Increased immuno accessibility of MOMP epitopes in a vaccine formulated with amphipols may account for the very robust protection elicited against a vaginal challenge with C. muridarum. (submitted for publication)

  • Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tribet C, Audebert R, Popot J-L (1997) Stabilization of hydrophobic colloidal dispersions in water with amphiphilic polymers: application to integral membrane proteins. Langmuir 13:5570–5576

    CAS  Google Scholar 

  • Tribet C, Diab C, Dahmane T, Zoonens M, Popot J-L, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634

    CAS  PubMed  Google Scholar 

  • Vial F, Rabhi S, Tribet C (2005) Association of octyl-modified poly(acrylic acid) onto unilamellar vesicles of lipids and kinetics of vesicle disruption. Langmuir 21:853–862

    CAS  PubMed  Google Scholar 

  • Wang TK, Iliopoulos I, Audebert R (1988) Viscometric behavior of hydrophobically modified poly(sodium acrylate). Polymer Bull20:577–582

    CAS  Google Scholar 

  • Warnecke A, Kratz F (2003) Maleimide-oligo(ethylene glycol) derivatives of camptothecin as albumin-binding prodrugs: synthesis and antitumor efficacy. Bioconjugate Chem 14:377–387

    CAS  Google Scholar 

  • Woghiren C, Sharma B, Stein S (1993) Protected thiol polyethylene-glycol. A new activated polymer for reversible protein modification. Bioconjugate Chem 4:314–318

    CAS  Google Scholar 

  • Yoshimoto K, Hirase T, Nemoto S, Hatta T, Nagasaki Y (2008) Facile construction of sulfanyl-terminated poly(ethylene glycol)-brushed layer on a gold surface for protein immobilization by the combined use of sulfanyl-ended telechelic and semitelechelic poly(ethylene glycol)s. Langmuir 24:9623–9629

    CAS  PubMed  Google Scholar 

  • Zoonens M, Popot J-L (2014) Amphipols for each season. (submitted for publication)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zoonens M, Catoire LJ, Giusti F, Popot J-L (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zoonens M, Giusti F, Zito F, Popot J-L (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404

    CAS  PubMed  Google Scholar 

  • Zoonens M, Zito F, Martinez KL, Popot J-L (2014) Amphipols: a general introduction and some protocols, In: Membrane protein production for structural analysis (I Mus-Veteau, ed.), Springer (in press)

  • Zugates GT, Anderson DG, Little SR, Lawhorn IEB, Langer R (2006) Synthesis of poly(beta-amino ester)s with thiol-reactive side chains for DNA delivery. J Am Chem Soc 128:12726–12734

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Center National de la Recherche Scientifique, by Université Paris-7 Denis Diderot, and by U.S. National grant R01AI092129 from the National Institute of Allergy and Infectious Diseases, French Agence Nationale pour la Recherche grant ‘X-Or,’ ANR SVSE5 2010-BLAN-1535, and grant ‘DYNAMO,’ ANR-11-LABX-0011-01 from the French ‘Initiative d’Excellence’ program. CLB has been the beneficiary of funding by the Fondation pour la Recherche Médicale, the Agence Nationale de la Recherche Scientifique (ANR-07-BLAN-0092 ‘Refolding GPCRs’ and SVSE5 2010-BLAN-1535 ‘X-Or’) and the Direction Innovation et Relations avec les Entreprises of the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Giusti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Bon, C., Popot, JL. & Giusti, F. Labeling and Functionalizing Amphipols for Biological Applications. J Membrane Biol 247, 797–814 (2014). https://doi.org/10.1007/s00232-014-9655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9655-y

Keywords

Navigation