Skip to main content
Log in

Application of Amphipols for Structure–Functional Analysis of TRP Channels

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Amphipathic polymers (amphipols), such as A8-35 and SApol, are a new tool for stabilizing integral membrane proteins in detergent-free conditions for structural and functional studies. Transient receptor potential (TRP) ion channels function as tetrameric protein complexes in a diverse range of cellular processes including sensory transduction. Mammalian TRP channels share ~20 % sequence similarity and are categorized into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPA (ankyrin), TRPM (melastatin), TRPP (polycystin), and TRPML (mucolipin). Due to the inherent difficulties in purifying eukaryotic membrane proteins, structural studies of TRP channels have been limited. Recently, A8-35 was essential in resolving the molecular architecture of the nociceptor TRPA1 and led to the determination of a high-resolution structure of the thermosensitive TRPV1 channel by cryo-EM. Newly developed maltose-neopentyl glycol (MNG) detergents have also proven to be useful in stabilizing TRP channels for structural analysis. In this review, we will discuss the impacts of amphipols and MNG detergents on structural studies of TRP channels by cryo-EM. We will compare how A8-35 and MNG detergents interact with the hydrophobic transmembrane domains of TRP channels. In addition, we will discuss what these cryo-EM studies reveal on the importance of screening different types of surfactants toward determining high-resolution structures of TRP channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A8-35:

A poly(sodium acrylate)-based amphipol compromising 35 % of free carboxylates, 25 % of octyl chains, 40 % of isopropyl groups

SApol:

Sulfonated amphipol

DM:

Decyl-β-D-maltoside

DDM:

Dodecyl-β-D-maltoside

MNG:

Maltose-neopentyl glycol

2D:

2-Dimensional

TM:

Transmembrane

TRPA:

Transient receptor potential ankyrin

TRPV:

Transient receptor potential vanilloid

EM:

Electron microscopy

SEC:

Size-exclusion chromatography

References

  • Althoff T, Mills DJ, Popot JL, Kuhlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664

    Article  CAS  Google Scholar 

  • Andrade EL, Meotti FC, Calixto JB (2012) TRPA1 antagonists as potential analgesic drugs. Pharmacol Ther 133:189–204

    Article  CAS  Google Scholar 

  • Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–118

    Article  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  Google Scholar 

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    Article  CAS  Google Scholar 

  • Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Guittet E, Popot JL (2010) Solution NMR mapping of water-accessible residues in the transmembrane beta-barrel of OmpX. Eur Biophys J 39:623–630

    Article  CAS  Google Scholar 

  • Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y, Drew D, Popot JL, Picot D, Fox BG, Guan L, Gether U, Byrne B, Kobilka B, Gellman SH (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008

    Article  CAS  Google Scholar 

  • Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY (2011) Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 286:38168–38176

    Article  CAS  Google Scholar 

  • Dahmane T, Giusti F, Catoire LJ, Popot JL (2011) Sulfonated amphipols: synthesis, properties, and applications. Biopolymers 95:811–823

    Article  CAS  Google Scholar 

  • Etzkorn, M, Zoonens, M, Catoire, LJ, Popot, JL, Hiller, S (2014). How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus. J Membr Biol [Epub ahead of print]

  • Flotenmeyer M, Weiss H, Tribet C, Popot JL, Leonard K (2007) The use of amphipathic polymers for cryo electron microscopy of NADH: ubiquinone oxidoreductase (complex I). J Microsc 227:229–235

    Article  Google Scholar 

  • Fujiwara Y, Minor DL Jr (2008) X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. J Mol Biol 383:854–870

    Article  CAS  Google Scholar 

  • Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406

    Article  CAS  Google Scholar 

  • Gohon Y, Popot JL (2003) Membrane protein-surfactant complexes. Curr Opin Coll Interface Sci 8:15–22

    Article  CAS  Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok RW, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot JL, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537

    Article  CAS  Google Scholar 

  • Henderson R (2013) Structural biology: ion channel seen by electron microscopy. Nature 504:93–94

    Article  CAS  Google Scholar 

  • Huynh KW, Cohen MR, Chakrapani S, Holdaway HA, Stewart PL, Moiseenkova-Bell VY (2014) Structural insight into the assembly of TRPV channels. Structure 22:260–268

    Article  CAS  Google Scholar 

  • Inada H, Procko E, Sotomayor M, Gaudet R (2012) Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry 51:6195–6206

    Article  CAS  Google Scholar 

  • Jin X, Touhey J, Gaudet R (2006) Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem 281:25006–25010

    Article  CAS  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  CAS  Google Scholar 

  • Kevany BM, Tsybovsky Y, Campuzano ID, Schnier PD, Engel A, Palczewski K (2013) Structural and functional analysis of the native peripherin-ROM1 complex isolated from photoreceptor cells. J Biol Chem 288:36272–36284

    Article  CAS  Google Scholar 

  • Lau SY, Procko E, Gaudet R (2012) Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. J Gen Physiol 140:541–555

    Article  CAS  Google Scholar 

  • le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111

    Article  Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112

    Article  CAS  Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2014) Single particle electron cryo-microscopy of a mammalian ion channel. Curr Opin Struct Biol 27C:1–7

    Article  Google Scholar 

  • Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918

    Article  CAS  Google Scholar 

  • Moiseenkova-Bell VY, Wensel TG (2009) Hot on the trail of TRP channel structure. J Gen Physiol 133:239–244

    Article  CAS  Google Scholar 

  • Moiseenkova-Bell V, Wensel TG (2011) Functional and structural studies of TRP channels heterologously expressed in budding yeast. Adv Exp Med Biol 704:25–40

    Article  CAS  Google Scholar 

  • Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci USA 105:7451–7455

    Article  CAS  Google Scholar 

  • Phelps CB, Huang RJ, Lishko PV, Wang RR, Gaudet R (2008) Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47:2476–2484

    Article  CAS  Google Scholar 

  • Phelps CB, Wang RR, Choo SS, Gaudet R (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285:731–740

    Article  CAS  Google Scholar 

  • Popot JL, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flotenmeyer M, Giusti F, Gohon Y, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574

    Article  CAS  Google Scholar 

  • Popot JL, Althoff T, Bagnard D, Baneres JL, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Cremel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kuhlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408

    Article  CAS  Google Scholar 

  • Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011a) Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature 469:175–180

    Article  CAS  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011b) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  CAS  Google Scholar 

  • Ring AM, Manglik A, Kruse AC, Enos MD, Weis WI, Garcia KC, Kobilka BK (2013) Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502:575–579

    Article  CAS  Google Scholar 

  • Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117

    Article  CAS  Google Scholar 

  • Shi DJ, Ye S, Cao X, Zhang R, Wang K (2013) Crystal structure of the N-terminal ankyrin repeat domain of TRPV3 reveals unique conformation of finger 3 loop critical for channel function. Protein Cell 4:942–950

    Article  CAS  Google Scholar 

  • Tribet C, Audebert R, Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050

    Article  CAS  Google Scholar 

  • Tribet C, Diab C, Dahmane T, Zoonens M, Popot JL, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634

    Article  CAS  Google Scholar 

  • Tsybovsky Y, Orban T, Molday RS, Taylor D, Palczewski K (2013) Molecular organization and ATP-induced conformational changes of ABCA4, the photoreceptor-specific ABC transporter. Structure 21:854–860

    Article  CAS  Google Scholar 

  • Vahedi-Faridi A, Jastrzebska B, Palczewski K, Engel A (2013) 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy. Microscopy (Oxf) 62:95–107

    Article  CAS  Google Scholar 

  • Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  Google Scholar 

  • Westfield GH, Rasmussen SG, Su M, Dutta S, DeVree BT, Chung KY, Calinski D, Velez-Ruiz G, Oleskie AN, Pardon E, Chae PS, Liu T, Li S, Woods VL Jr, Steyaert J, Kobilka BK, Sunahara RK, Skiniotis G (2011) Structural flexibility of the G alpha s alpha-helical domain in the beta2-adrenoceptor Gs complex. Proc Natl Acad Sci USA 108:16086–16091

    Article  CAS  Google Scholar 

  • Wilkens S (2000) F1F0-ATP synthase-stalking mind and imagination. J Bioenerg Biomembr 32:333–339

    Article  CAS  Google Scholar 

  • Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J (2001) Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 7:1047–1057

    Article  CAS  Google Scholar 

  • Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE, Weis WI, Coughlin SR, Kobilka BK (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492:387–392

    Article  CAS  Google Scholar 

  • Zoonens M, Popot JL (2014). Amphipols for each season. J Membrane Biol. doi:10.1007/s00232-014-9666-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Teresa Cvetkov for her contribution to this project. We are also very grateful to Jean-Luc Popot for providing us with amphipols and helpful discussions. This work was supported by the American Heart Association (NCRP Scientist Development Grant 11SDG5280029), the American Lung Association Biomedical Research Grant (RG-166985-N), and the National Institute of Health Grant (NIGMS 1R01GM103899-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Y. Moiseenkova-Bell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, K.W., Cohen, M.R. & Moiseenkova-Bell, V.Y. Application of Amphipols for Structure–Functional Analysis of TRP Channels. J Membrane Biol 247, 843–851 (2014). https://doi.org/10.1007/s00232-014-9684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9684-6

Keywords

Navigation