Skip to main content

Advertisement

Log in

Effect of Janus Kinase 3 on the Peptide Transporters PEPT1 and PEPT2

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The tyrosine kinase Janus kinase 3 (JAK3) contributes to signaling regulating the proliferation and apoptosis of lymphocytes and tumor cells. Replacement of lysine by alanine in the catalytic subunit yields the inactive K851AJAK3 mutant that underlies severe combined immune deficiency. The gain-of-function mutation A572VJAK3 is found in acute megakaryoplastic leukemia and T cell lymphoma. The excessive nutrient demand of tumor cells requires upregulation of transporters in the cell membrane including peptide transporters PEPT1 and PEPT2. The carriers further accomplish intestinal peptide transport. Little is known about signaling regulating peptide transport. The present study explored whether PEPT1 and PEPT2 are upregulated by JAK3. PEPT1 or PEPT2 was expressed in Xenopus oocytes with or without additional expression of JAK3, and electrogenic peptide (glycine–glycine) transport was determined by dual-electrode voltage clamp. PEPT2-HA membrane protein abundance was analyzed by chemiluminescence. Intestinal electrogenic peptide transport was estimated from peptide-induced current in Ussing chamber experiments. In PEPT1- and PEPT2-expressing oocytes, but not in water-injected oocytes, the dipeptide gly–gly generated an inward current, which was significantly increased following coexpression of JAK3. The effect of JAK3 on PEPT1 was mimicked by A568VJAK3 but not by K851AJAK3. JAK3 increased maximal peptide-induced current in PEPT1-expressing oocytes but rather decreased apparent affinity of the carrier. Coexpression of JAK3 enhanced the PEPT2-HA protein abundance in the cell membrane. In JAK3- and PEPT1-expressing oocytes, peptide-induced current was blunted by the JAK3 inhibitor WHI-P154, 4-[(3′-bromo-4′-hydroxyphenyl)amino]-6,7-dimethoxyquinazoline (22 μM). In intestinal segments gly–gly generated a current which was significantly smaller in JAK3-deficient mice (jak3 /) than in wild-type mice (jak3 +/+). In conclusion, JAK3 is a powerful regulator of peptide transporters PEPT1 and PEPT2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alesutan I, Sopjani M, Dermaku-Sopjani M, Munoz C, Voelkl J, Lang F (2012) Upregulation of Na-coupled glucose transporter SGLT1 by Tau tubulin kinase 2. Cell Physiol Biochem 30:458–465

    Article  CAS  PubMed  Google Scholar 

  • Alteheld B, Evans ME, Gu LH, Ganapathy V, Leibach FH, Jones DP, Ziegler TR (2005) Alanylglutamine dipeptide and growth hormone maintain PepT1-mediated transport in oxidatively stressed Caco-2 cells. J Nutr 135:19–26

    CAS  PubMed  Google Scholar 

  • Ananthakrishnan R, Hallam K, Li Q, Ramasamy R (2005) JAK-STAT pathway in cardiac ischemic stress. Vascul Pharmacol 43:353–356

    Article  CAS  PubMed  Google Scholar 

  • Bhavsar SK, Gu S, Bobbala D, Lang F (2011) Janus kinase 3 is expressed in erythrocytes, phosphorylated upon energy depletion and involved in the regulation of suicidal erythrocyte death. Cell Physiol Biochem 27:547–556

    Article  CAS  PubMed  Google Scholar 

  • Boehmer C, Palmada M, Klaus F, Jeyaraj S, Lindner R, Laufer J, Daniel H, Lang F (2008) The peptide transporter PEPT2 is targeted by the protein kinase SGK1 and the scaffold protein NHERF2. Cell Physiol Biochem 22:705–714

    Article  CAS  PubMed  Google Scholar 

  • Brandsch M (2009) Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol 5:887–905

    Article  CAS  PubMed  Google Scholar 

  • Candotti F, Oakes SA, Johnston JA, Giliani S, Schumacher RF, Mella P, Fiorini M, Ugazio AG, Badolato R, Notarangelo LD, Bozzi F, Macchi P, Strina D, Vezzoni P, Blaese RM, O’Shea JJ, Villa A (1997) Structural and functional basis for JAK3-deficient severe combined immunodeficiency. Blood 90:3996–4003

    CAS  PubMed  Google Scholar 

  • Chen M, Cheng A, Candotti F, Zhou YJ, Hymel A, Fasth A, Notarangelo LD, O’Shea JJ (2000) Complex effects of naturally occurring mutations in the JAK3 pseudokinase domain: evidence for interactions between the kinase and pseudokinase domains. Mol Cell Biol 20:947–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Totero D, Meazza R, Capaia M, Fabbi M, Azzarone B, Balleari E, Gobbi M, Cutrona G, Ferrarini M, Ferrini S (2008) The opposite effects of IL-15 and IL-21 on CLL B cells correlate with differential activation of the JAK/STAT and ERK1/2 pathways. Blood 111:517–524

    Article  PubMed  Google Scholar 

  • Dermaku-Sopjani M, Sopjani M, Saxena A, Shojaiefard M, Bogatikov E, Alesutan I, Eichenmuller M, Lang F (2011) Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell Physiol Biochem 28:251–258

    Article  CAS  PubMed  Google Scholar 

  • Foley DW, Rajamanickam J, Bailey PD, Meredith D (2010) Bioavailability through PepT1: the role of computer modelling in intelligent drug design. Curr Comput Aided Drug Des 6:68–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghoreschi K, Laurence A, O’Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228:273–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez DE, Covitz KM, Sadee W, Mrsny RJ (1998) An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines AsPc-1 and Capan-2. Cancer Res 58:519–525

    CAS  PubMed  Google Scholar 

  • Haan C, Rolvering C, Raulf F, Kapp M, Druckes P, Thoma G, Behrmann I, Zerwes HG (2011) Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Chem Biol 18:314–323

    Article  CAS  PubMed  Google Scholar 

  • Henrion U, Zumhagen S, Steinke K, Strutz-Seebohm N, Stallmeyer B, Lang F, Schulze-Bahr E, Seebohm G (2012) Overlapping cardiac phenotype associated with a familial mutation in the voltage sensor of the KCNQ1 channel. Cell Physiol Biochem 29:809–818

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Bhavsar SK, Shojaiefard M, Saxena A, Merches K, Sopjani M, Alesutan I, Lang F (2011a) Stimulation of the glucose carrier SGLT1 by JAK2. Biochem Biophys Res Commun 408:208–213

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Bhavsar SK, Sopjani M, Alesutan I, Saxena A, Dermaku-Sopjani M, Lang F (2011b) Regulation of the glutamate transporters by JAK2. Cell Physiol Biochem 28:693–702

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Bhavsar SK, Lang F (2012) Downregulation of ClC-2 by JAK2. Cell Physiol Biochem 29:737–742

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Dong L, Bhavsar SK, Almilaji A, Lang F (2013) Upregulation of peptide transporters PepT1 and PepT2 by Janus kinase JAK2. Cell Physiol Biochem 31:673–682

    Article  CAS  PubMed  Google Scholar 

  • Ingersoll SA, Ayyadurai S, Charania MA, Laroui H, Yan Y, Merlin D (2012) The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 302:G484–G492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue M, Terada T, Okuda M, Inui K (2005) Regulation of human peptide transporter 1 (PEPT1) in gastric cancer cells by anticancer drugs. Cancer Lett 230:72–80

    Article  CAS  PubMed  Google Scholar 

  • Kamal MA, Keep RF, Smith DE (2008) Role and relevance of PEPT2 in drug disposition, dynamics, and toxicity. Drug Metab Pharmacokinet 23:236–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim BH, Oh SR, Yin CH, Lee S, Kim EA, Kim MS, Sandoval C, Jayabose S, Bach EA, Lee HK, Baeg GH (2010) MS-1020 is a novel small molecule that selectively inhibits JAK3 activity. Br J Haematol 148:132–143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koo GC, Tan SY, Tang T, Poon SL, Allen GE, Tan L, Chong SC, Ong WS, Tay K, Tao M, Quek R, Loong S, Yeoh KW, Yap SP, Lee KA, Lim LC, Tan D, Goh C, Cutcutache I, Yu W, Ng CC, Rajasegaran V, Heng HL, Gan A, Ong CK, Rozen S, Tan P, Teh BT, Lim ST (2012) Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov 2:591–597

    Article  CAS  PubMed  Google Scholar 

  • Malinge S, Ragu C, Della-Valle V, Pisani D, Constantinescu SN, Perez C, Villeval JL, Reinhardt D, Landman-Parker J, Michaux L, Dastugue N, Baruchel A, Vainchenker W, Bourquin JP, Penard-Lacronique V, Bernard OA (2008) Activating mutations in human acute megakaryoblastic leukemia. Blood 112:4220–4226

    Article  CAS  PubMed  Google Scholar 

  • Meredith D (2009) The mammalian proton-coupled peptide cotransporter PepT1: sitting on the transporter-channel fence? Philos Trans R Soc Lond B Biol Sci 364:203–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitsuoka K, Kato Y, Miyoshi S, Murakami Y, Hiraiwa M, Kubo Y, Nishimura S, Tsuji A (2010) Inhibition of oligopeptide transporter suppresses growth of human pancreatic cancer cells. Eur J Pharm Sci 40:202–208

    Article  CAS  PubMed  Google Scholar 

  • Nagel S, Papadakis M, Pfleger K, Grond-Ginsbach C, Buchan AM, Wagner S (2012) Microarray analysis of the global gene expression profile following hypothermia and transient focal cerebral ischemia. Neuroscience 208:109–122

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Yamamori M, Sakaeda T (2008) Pharmacogenetics of intestinal absorption. Curr Drug Deliv 5:153–169

    Article  CAS  PubMed  Google Scholar 

  • Nakayama J, Yamamoto M, Hayashi K, Satoh H, Bundo K, Kubo M, Goitsuka R, Farrar MA, Kitamura D (2009) BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. Blood 113:1483–1492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Newstead S (2011) Towards a structural understanding of drug and peptide transport within the proton-dependent oligopeptide transporter (POT) family. Biochem Soc Trans 39:1353–1358

    Article  CAS  PubMed  Google Scholar 

  • Notarangelo LD, Giliani S, Mazza C, Mella P, Savoldi G, Rodriguez-Perez C, Mazzolari E, Fiorini M, Duse M, Plebani A, Ugazio AG, Vihinen M, Candotti F, Schumacher RF (2000) Of genes and phenotypes: the immunological and molecular spectrum of combined immune deficiency. Defects of the gamma(c)-JAK3 signaling pathway as a model. Immunol Rev 178:39–48

    Article  CAS  PubMed  Google Scholar 

  • Pathare G, Foller M, Daryadel A, Mutig K, Bogatikov E, Fajol A, Almilaji A, Michael D, Stange G, Voelkl J, Wagner CA, Bachmann S, Lang F (2012) OSR1-sensitive renal tubular phosphate reabsorption. Kidney Blood Press Res 36:149–161

    Article  CAS  PubMed  Google Scholar 

  • Pesu M, Candotti F, Husa M, Hofmann SR, Notarangelo LD, O’Shea JJ (2005) Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. Immunol Rev 203:127–142

    Article  CAS  PubMed  Google Scholar 

  • Pieri M, Christian HC, Wilkins RJ, Boyd CA, Meredith D (2010) The apical (hPepT1) and basolateral peptide transport systems of Caco-2 cells are regulated by AMP-activated protein kinase. Am J Physiol Gastrointest Liver Physiol 299:G136–G143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rexhepaj R, Rotte A, Pasham V, Gu S, Kempe DS, Lang F (2010) PI3 kinase and PDK1 in the regulation of the electrogenic intestinal dipeptide transport. Cell Physiol Biochem 25:715–722

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Aliaga I, Daniel H (2008) Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 38:1022–1042

    Article  CAS  PubMed  Google Scholar 

  • Strutz-Seebohm N, Pusch M, Wolf S, Stoll R, Tapken D, Gerwert K, Attali B, Seebohm G (2011) Structural basis of slow activation gating in the cardiac I Ks channel complex. Cell Physiol Biochem 27:443–452

    Article  CAS  PubMed  Google Scholar 

  • Tai W, Chen Z, Cheng K (2013) Expression profile and functional activity of peptide transporters in prostate cancer cells. Mol Pharm 10:477–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomis DC, Lee W, Berg LJ (1997) T cells from Jak3-deficient mice have intact TCR signaling, but increased apoptosis. J Immunol 159:4708–4719

    CAS  PubMed  Google Scholar 

  • Tsume Y, Hilfinger JM, Amidon GL (2008) Enhanced cancer cell growth inhibition by dipeptide prodrugs of floxuridine: increased transporter affinity and metabolic stability. Mol Pharm 5:717–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uckun FM, Vassilev A, Dibirdik I, Tibbles H (2007) Targeting JAK3 tyrosine kinase-linked signal transduction pathways with rationally-designed inhibitors. Anticancer Agents Med Chem 7:612–623

    Article  CAS  PubMed  Google Scholar 

  • Vijayakrishnan L, Venkataramanan R, Gulati P (2011) Treating inflammation with the Janus kinase inhibitor CP-690,550. Trends Pharmacol Sci 32:25–34

    Article  CAS  PubMed  Google Scholar 

  • Walters DK, Mercher T, Gu TL, O’Hare T, Tyner JW, Loriaux M, Goss VL, Lee KA, Eide CA, Wong MJ, Stoffregen EP, McGreevey L, Nardone J, Moore SA, Crispino J, Boggon TJ, Heinrich MC, Deininger MW, Polakiewicz RD, Gilliland DG, Druker BJ (2006) Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 10:65–75

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Qian P, Jackson FR, Qian G, Wu G (2008) Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells. Int J Biochem Cell Biol 40:461–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yarandi SS, Hebbar G, Sauer CG, Cole CR, Ziegler TR (2011) Diverse roles of leptin in the gastrointestinal tract: modulation of motility, absorption, growth, and inflammation. Nutrition 27:269–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the meticulous preparation of the manuscript by Ali Soleimanpour and Lejla Subasic and technical support by Elfriede Faber. This study was supported by the Deutsche Forschungsgemeinschaft (GRK 1302, SFB 773 B4/A1, La 315/13-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warsi, J., Hosseinzadeh, Z., Dong, L. et al. Effect of Janus Kinase 3 on the Peptide Transporters PEPT1 and PEPT2. J Membrane Biol 246, 885–892 (2013). https://doi.org/10.1007/s00232-013-9582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9582-3

Keywords

Navigation