Skip to main content
Log in

Dielectric Analysis and Multi-cell Electrofusion of the Yeast Pichia pastoris for Electrophysiological Studies

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The yeast Pichia pastoris has become the most favored eukaryotic host for heterologous protein expression. P. pastoris strains capable of overexpressing various membrane proteins are now available. Due to their small size and the fungal cell wall, however, P. pastoris cells are hardly suitable for direct electrophysiological studies. To overcome these limitations, the present study aimed to produce giant protoplasts of P. pastoris by means of multi-cell electrofusion. Using a P. pastoris strain expressing channelrhodopsin-2 (ChR2), we first developed an improved enzymatic method for cell wall digestion and preparation of wall-less protoplasts. We thoroughly analyzed the dielectric properties of protoplasts by means of electrorotation and dielectrophoresis. Based on the dielectric data of tiny parental protoplasts (2–4 μm diameter), we elaborated efficient electrofusion conditions yielding consistently stable multinucleated protoplasts of P. pastoris with diameters of up to 35 μm. The giant protoplasts were suitable for electrophysiological measurements, as proved by whole-cell patch clamp recordings of light-induced, ChR2-mediated currents, which was impossible with parental protoplasts. The approach presented here offers a potentially valuable technique for the functional analysis of low-signal channels and transporters, expressed heterologously in P. pastoris and related host systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnold WM, Zimmermann U (1988) Electro-rotation—development of a technique for dielectric measurements on individual cells and particles. J Electrostat 21:151–191

    Article  Google Scholar 

  • Arnold WM, Geier BM, Wendt B, Zimmermann U (1986) The change in the electrorotation of yeast cells effected by silver ions. Biochim Biophys Acta 889:35–48

    Article  CAS  Google Scholar 

  • Asami K, Yonezawa T (1996) Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz. Biophys J 71:2192–2200

    Article  PubMed  CAS  Google Scholar 

  • Bamann C, Kirsch T, Nagel G, Bamberg E (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375:686–694

    Article  PubMed  CAS  Google Scholar 

  • Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234

    Article  PubMed  CAS  Google Scholar 

  • Bretthauer RK, Castellino FJ (1999) Glycosylation of Pichia pastoris–derived proteins. Biotechnol Appl Biochem 30:193–200

    PubMed  CAS  Google Scholar 

  • Canales M, Buxado JA, Heynngnezz L, Enriquez A (1998) Mechanical disruption of Pichia pastoris yeast to recover the recombinant glycoprotein Bm86. Enzyme Microb Technol 23:58–63

    Article  CAS  Google Scholar 

  • Chung C, Waterfall M, Pells S, Menachery A, Smith S, Pethig R (2011) Dielectrophoretic characterisation of mammalian cells above 100 MHz. J Electr Bioimp 2:64–71

    Google Scholar 

  • Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia pastoris as a host system for transformations. Mol Cell Biol 5:3376–3385

    PubMed  CAS  Google Scholar 

  • Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  PubMed  CAS  Google Scholar 

  • De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566

    Article  PubMed  Google Scholar 

  • Diatloff E, Forde BG, Roberts SK (2006) Expression and transport characterisation of the wheat low-affinity cation transporter (LCT1) in the methylotrophic yeast Pichia pastoris. Biochem Biophys Res Commun 344:807–813

    Article  PubMed  CAS  Google Scholar 

  • Fuhr G, Gimsa J, Glaser R (1985) Interpretation of electrorotation of protoplasts. 1 Theoretical considerations. Studia Biophys 108:149–164

    Google Scholar 

  • Gabrijel M, Bergant M, Kreft M, Jeras M, Zorec R (2009) Fused late endocytic compartments and immunostimulatory capacity of dendritic-tumor cell hybridomas. J Membr Biol 229:11–18

    Article  PubMed  CAS  Google Scholar 

  • Gagnon ZR (2011) Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 32:2466–2487

    Article  PubMed  CAS  Google Scholar 

  • Gimsa J, Müller T, Schnelle T, Fuhr G (1996) Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm. Biophys J 71:495–506

    Article  PubMed  CAS  Google Scholar 

  • Glaser R, Fuhr G, Gimsa J (1983) Rotation of erythrocytes, plant-cells, and protoplasts in an outside rotating electric-field. Studia Biophys 96:11–20

    Google Scholar 

  • Holzapfel C, Vienken J, Zimmermann U (1982) Rotation of cells in an alternating electric field theory and experimental proof. J Membr Biol 67:13–26

    Article  PubMed  CAS  Google Scholar 

  • Hölzel R (1997) Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz. Biophys J 73:1103–1109

    Article  PubMed  Google Scholar 

  • Huang Y, Hölzel R, Pethig R, Wang XB (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37:1499–1517

    Article  PubMed  CAS  Google Scholar 

  • Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kiesel M, Reuss R, Endter J, Zimmermann D, Zimmermann H, Shirakashi R, Bamberg E, Zimmermann U, Sukhorukov VL (2006) Swelling-activated pathways in human T-lymphocytes studied by cell volumetry and electrorotation. Biophys J 90:4720–4729

    Article  PubMed  CAS  Google Scholar 

  • Kiviharju K, Salonen K, Moilanen U, Eerikäinen T (2008) Biomass measurement online: the performance of in situ measurements and software sensors. J Ind Microbiol Biotechnol 35:657–665

    Article  PubMed  CAS  Google Scholar 

  • Klinner U, Böttcher F, Samsonova IA (1980) Hybridization of Pichia guilliermondii by protoplast fusion. In: Ferenczy L, Farkas GL (eds) Advances in protoplast research. In: Proceedings of the 5th international protoplast symposium. Akadémiai Kiadó, Budapest, pp 113–118

  • Lei U, Sun P-H, Pethig R (2011) Refinement of the theory for extracting cell dielectric properties from dielectrophoresis and electrorotation experiments. Biomicrofluidics 5:044109

    Article  CAS  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  PubMed  CAS  Google Scholar 

  • Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811

    Article  PubMed  Google Scholar 

  • Priel A, Gil Z, Moy VT, Magleby KL, Silberberg SD (2007) Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording. Biophys J 92:3893–3900

    Article  PubMed  CAS  Google Scholar 

  • Sukhorukov VL, Arnold WM, Zimmermann U (1993) Hypotonically induced changes in the plasma-membrane of cultured mammalian cells. J Membr Biol 132:27–40

    PubMed  CAS  Google Scholar 

  • Sukhorukov VL, Reuss R, Zimmermann D, Held C, Müller KJ, Kiesel M, Gessner P, Steinbach A, Schenk WA, Bamberg E, Zimmermann U (2005) Surviving high-intensity field pulses: strategies for improving robustness and performance of electrotransfection and electrofusion. J Membr Biol 206:187–201

    Article  PubMed  CAS  Google Scholar 

  • Sukhorukov VL, Reuss R, Endter JM, Fehrmann S, Katsen-Globa A, Gessner P, Steinbach A, Müller KJ, Karpas A, Zimmermann U, Zimmermann H (2006) A biophysical approach to the optimisation of dendritic-tumour cell electrofusion. Biochem Biophys Res Commun 346:829–839

    Article  PubMed  CAS  Google Scholar 

  • Terpitz U, Raimunda D, Westhoff M, Sukhorukov VL, Beauge L, Bamberg E, Zimmermann D (2008) Electrofused giant protoplasts of Saccharomyces cerevisiae as a novel system for electrophysiological studies on membrane proteins. Biochim Biophys Acta 1778:1493–1500

    Article  PubMed  CAS  Google Scholar 

  • Tschopp JF, Brust PF, Cregg JM, Stillman CA, Gingeras TR (1987) Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res 15:3859–3876

    Article  PubMed  CAS  Google Scholar 

  • Usaj M, Trontelj K, Miklavcic D, Kanduser M (2010) Cell–cell electrofusion: optimization of electric field amplitude and hypotonic treatment for mouse melanoma (B16–F1) and Chinese hamster ovary (CHO) cells. J Membr Biol 236:107–116

    Article  PubMed  CAS  Google Scholar 

  • Yardley YE, Kell DB, Barrett J, Davey CL (2000) On-line, real-time measurements of cellular biomass using dielectric spectroscopy. Biotechnol Genet Eng Rev 17:3–35

    PubMed  CAS  Google Scholar 

  • Zhou XF, Markx GH, Pethig R (1996) Effect of biocide concentration on electrorotation spectra of yeast cells. Biochim Biophys Acta 1281:60–64

    Article  PubMed  Google Scholar 

  • Zimmermann U, Neil GA (1996) Electromanipulation of cells. CRC Press, Boca Raton

    Google Scholar 

  • Zimmermann D, Terpitz U, Zhou A, Reuss R, Müller KJ, Sukhorukov VL, Gessner P, Nagel G, Zimmermann U, Bamberg E (2006) Biophysical characterisation of electrofused giant HEK293-cells as a novel electrophysiological expression system. Biochem Biophys Res Commun 348:673–681

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann D, Zhou A, Kiesel M, Feldbauer K, Terpitz U, Haase W, Schneider-Hohendorf T, Bamberg E, Sukhorukov VL (2008) Effects on capacitance by overexpression of membrane proteins. Biochem Biophys Res Commun 369:1022–1026

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. Bamann (MPI of Biophysics) for generously providing us with the P. pastoris ChR2(C128T)YFP strain, M. Heidbreder (University of Würzburg) for support with LSM imaging, A. Pustlauck and E. Kaindl (MPI of Biophysics) for technical support and J. Reichert (MPI of Biophysics), A. Gessner and M. Behringer (University of Würzburg) for construction of electrofusion chambers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir L. Sukhorukov.

Additional information

U. Terpitz and S. Letschert contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3744 kb)

Appendix

Appendix

Dielectric Models

When exposed to an AC electric field, cells experience mechanical forces, pressures and torques based on the electrostatic interactions of the induced cell dipole with the applied field. The cell dipole (μ) is proportional to the applied field (E 0) and the complex dielectric polarizability of the cell: χ* (μ ∝ E · χ*). Among a variety of AC electrokinetic phenomena, dielectrophoresis (DEP) and multi-cell rotation (MCR) are most critical for electrofusion. Thus, cell alignment by positive DEP is required to produce stable cell chains prior to fusion, whereas the MCR effect may lead to destabilization or even to disruption of cell chains.

Exerted by an inhomogeneous field, the dielectrophoretic force (F DEP) is proportional to the cell volume V (∝r 3, with r = cell radius), the field gradient ∇E 0 and the real part of polarizability χ* (Jones 1995):

$$ F_{DEP} = 2\pi r^{3} \varepsilon_{\text{e}} \nabla E_{0}^{2} Re\chi^{ * } $$
(1)

In addition to the DEP force, MCR can occur in a linear AC field if cell chains are misaligned with respect to the field, E 0 (Holzapfel et al. 1982). In case of two adjacent cells, the following relation holds for the frequency-dependent MCR speed, ΩMCR:

$$ \Upomega_{\text{MCR}} = \frac{{3\varepsilon_{e} }}{8\eta }E_{0}^{2} \sin 2\theta \frac{{{\text{Im}}^{ 2} \chi^{ * } }}{{4 - \text{Re} \chi^{ * } }} $$
(2)

where θ is the angle between the field E 0 and the line connecting the centers of the two cells and η is the viscosity of the suspending medium.

In a rotating field, the cell rotation, ΩROT, is determined by the imaginary part of χ*:

$$ \Upomega_{ROT} = - \frac{{\varepsilon_{\text{e}} E_{0}^{2} }}{2\eta }{\text{Im }}\chi^{*} $$
(3)

As evident from Eqs. 13, DEP, MCR and ROT are interrelated phenomena linked to each other through the complex polarizability (χ*), which in turn depends on the dielectric cell structure. Using an approach described elsewhere (Jones 1995), we derived mathematical expressions for the χ* of single- and double-shelled dielectric particles.

In the present study, the ROT and DEP responses of isolated protoplasts of P. pastoris could be approximated quite well with the single-shell model (SSM). Given that the protoplast radii (r ≈2 μm) are much larger than the thickness of the plasma membrane (~10 nm), a simplified expression of the complex polarizability (χ*) was used:

$$ \chi^{*} = \frac{{r\;C_{m}^{*} \left( {\varepsilon_{i}^{*} - \varepsilon_{e}^{*} } \right) - \varepsilon_{i}^{*} \varepsilon_{e}^{*} }}{{r\;C_{m}^{*} \left( {\varepsilon_{i}^{*} + 2\varepsilon_{e}^{*} } \right) + 2\varepsilon_{i}^{*} \varepsilon_{e}^{*} }} $$
(4)

where the complex permittivity (ε*) is defined as ε* = ε − jσ/ω, with ε as the real permittivity (F/m) and σ as the conductivity (S/m) of the medium (subscript “e”) and cytosol (subscript “i”); j = (−1)1/2; and ω = 2πf is the radian field frequency. The complex area-specific membrane capacitance is given by C *m  = C m − j G m/ω, where C m (F/m2) and G m (S/m2) are the real membrane capacitance and conductance per unit area, respectively.

The ROT spectra of single-shelled cells can also be presented as a superposition of two Lorentzian peaks:

$$ \Upomega \left( f \right) = 2A_{1} \frac{{\left( {f/f_{{{\text{c}}1}} } \right)}}{{1 + (f/f_{{{\text{c}}1}} )^{2} }} + 2A_{2} \frac{{\left( {f/f_{{{\text{c}}2}} } \right)}}{{1 + (f/f_{{{\text{c}}2}} )^{2} }} $$
(5)

where A 1 and A 2 are the amplitudes of the anti- and cofield peaks centered at f c1 and f c2, respectively. Equation 5 was used for to determine the f c1 and f c2 values from the ROT spectra, as shown in Fig. 2a.

Provided that σi ≫ σe ≫ σm, the SSM yields the following relationship between the f c1, radius r, σe and membrane properties:

$$ f_{c1} \cdot r = \frac{{\sigma_{e} }}{{\pi \cdot C_{m} }} + \frac{{r \cdot G_{m} }}{{2\pi \cdot C_{m} }} $$
(6)

Equation 6 was used in this study to determine the C m and G m values from the f c1 data obtained by the CRF technique.

The double-shell model (DSM), applied here to walled P. pastoris cells, yields the following expression for complex polarizability (χ*):

$$ \chi^{*} = \frac{{C_{m}^{*} r\left( {\varepsilon_{w}^{*} \left( {\left( {a^{3} + 2} \right)\varepsilon_{i}^{*} + 2\left( {a^{3} - 1} \right)\varepsilon_{w}^{*} } \right) - \varepsilon_{e}^{*} \left( {\left( {a^{3} - 1} \right)\varepsilon_{i}^{*} + \left( {2a^{3} + 1} \right)\varepsilon_{w}^{*} } \right)} \right) - a\varepsilon_{i}^{*} \varepsilon_{w}^{*} \left( {\left( {2a^{3} + 1} \right)\varepsilon_{e}^{*} - 2\left( {a^{3} - 1} \right)\varepsilon_{w}^{*} } \right)}}{{C_{m}^{*} r\left( {2\varepsilon_{e}^{*} \left( {\left( {a^{3} - 1} \right)\varepsilon_{i}^{*} + \left( {2a^{3} + 1} \right)\varepsilon_{w}^{*} } \right) + \varepsilon_{w}^{*} \left( {\left( {a^{3} + 2} \right)\varepsilon_{i}^{*} + 2\left( {a^{3} - 1} \right)\varepsilon_{w}^{*} } \right)} \right) + 2a\varepsilon_{i}^{*} \varepsilon_{w}^{*} \left( {\left( {2a^{3} + 1} \right)\varepsilon_{e}^{*} + \left( {a^{3} - 1} \right)\varepsilon_{w}^{*} } \right)}} $$
(7)

where a = r/(r − d), with r and d denoting the cell radius and the thickness of the cell wall, respectively. Subscript “w” refers to the cell wall. The meaning of other symbols is the same as in Eqs. 16.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terpitz, U., Letschert, S., Bonda, U. et al. Dielectric Analysis and Multi-cell Electrofusion of the Yeast Pichia pastoris for Electrophysiological Studies. J Membrane Biol 245, 815–826 (2012). https://doi.org/10.1007/s00232-012-9484-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9484-9

Keywords

Navigation