Skip to main content
Log in

Functional Differences in Pore Properties Between Wild-Type and Cysteine-Less Forms of the CFTR Chloride Channel

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Studies of the structure and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel have been advanced by the development of functional channel variants in which all 18 endogenous cysteine residues have been mutated (“cys-less” CFTR). However, cys-less CFTR has a slightly higher single-channel conductance than wild-type CFTR, raising questions as to the suitability of cys-less as a model of the wild-type CFTR pore. We used site-directed mutagenesis and patch-clamp recording to investigate the origin of this conductance difference and to determine the extent of functional differences between wild-type and cys-less CFTR channel permeation properties. Our results suggest that the conductance difference is the result of a single substitution, of C343: the point mutant C343S has a conductance similar to cys-less, whereas the reverse mutation, S343C in a cys-less background, restores wild-type conductance levels. Other cysteine substitutions (C128S, C225S, C376S, C866S) were without effect. Substitution of other residues for C343 suggested that conductance is dependent on amino acid side chain volume at this position. A range of other functional pore properties, including interactions with channel blockers (Au[CN] 2 , 5-nitro-2-[3-phenylpropylamino]benzoic acid, suramin) and anion permeability, were not significantly different between wild-type and cys-less CFTR. Our results suggest that functional differences between these two CFTR constructs are of limited scale and scope and result from a small change in side chain volume at position 343. These results therefore support the use of cys-less as a model of the CFTR pore region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano JR, Landstrom A, Sansom M, Dawson DC (2009) Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore. Biochemistry 48:10078–10088

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Li M, Hwang T-C (2010) Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation. J Gen Physiol 136:293–309

    Article  PubMed  CAS  Google Scholar 

  • Baker JM, Hudson RP, Kanelis V, Choy WY, Thibodeau PH, Thomas PJ, Forman-Kay JD (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 14:738–745

    Article  PubMed  CAS  Google Scholar 

  • Beck EJ, Yang Y, Yaemsiri S, Raghuram V (2008) Conformational changes in a pore-lining helix coupled to CFTR channel gating. J Biol Chem 283:4957–4966

    Article  PubMed  CAS  Google Scholar 

  • Cheung M, Akabas MH (1996) Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment. Biophys J 70:2688–2695

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Aleksandrov L, Hou Y-X, Gentzsch M, Chen J-H, Riordan JR, Aleksandrov AA (2006) The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating. J Physiol 572:347–358

    Article  PubMed  CAS  Google Scholar 

  • El Hiani Y, Linsdell P (2010) Changes in accessibility of cytoplasmic substances to the pore associated with activation of cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 285:32126–32140

    Article  PubMed  CAS  Google Scholar 

  • Fatehi M, Linsdell P (2009) Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines. J Membr Biol 228:151–164

    Article  PubMed  CAS  Google Scholar 

  • Fatehi M, St. Aubin CN, Linsdell P (2007) On the origin of asymmetric interactions between permeant anions and the CFTR chloride channel pore. Biophys J 92:1241–1253

    Article  PubMed  CAS  Google Scholar 

  • Gadsby DC, Vergani P, Csanády L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483

    Article  PubMed  CAS  Google Scholar 

  • Ge N, Muise CN, Gong X, Linsdell P (2004) Direct comparison of the functional roles played by different transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 279:55283–55289

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Linsdell P (2003a) Mutation-induced blocker permeability and multi-ion block of the CFTR chloride channel pore. J Gen Physiol 122:673–687

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Linsdell P (2003b) Coupled movement of permeant and blocking ions in the CFTR chloride channel pore. J Physiol 549:375–385

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Linsdell P (2004) Maximization of the rate of chloride conduction in the CFTR channel pore by ion–ion interactions. Arch Biochem Biophys 426:78–82

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Burbridge SM, Cowley EA, Linsdell P (2002) Molecular determinants of Au(CN)2-binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl channel pore. J Physiol 540:39–47

    Article  PubMed  CAS  Google Scholar 

  • Gupta J, Linsdell P (2002) Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel. Pflugers Arch 443:739–747

    Article  PubMed  CAS  Google Scholar 

  • He L, Aleksandrov AA, Serohijos AWR, Hegedüs T, Aleksandrov LA, Cui L, Dokholyan NV, Riordan JR (2008) Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating. J Biol Chem 283:26383–26390

    Article  PubMed  CAS  Google Scholar 

  • Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas PJ, Zhang M, Zhao X, Emtage S (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23:282–293

    Article  PubMed  CAS  Google Scholar 

  • Lewis HA, Zhao X, Wang C, Sauder JM, Rooney I, Noland BW, Lorimer D, Kearnis MC, Conners K, Condon B, Maloney PC, Guggino WB, Hunt JF, Emtage S (2005) Impact of the ΔF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J Biol Chem 280:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Li M-S, Demsey AFA, Qi J, Linsdell P (2009) Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate (MTSES). Br J Pharmacol 157:1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Linsdell P (2001) Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Physiol 531:51–66

    Article  PubMed  CAS  Google Scholar 

  • Linsdell P (2005) Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 280:8945–8950

    Article  PubMed  CAS  Google Scholar 

  • Linsdell P (2006) Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Exp Physiol 91:123–129

    Article  PubMed  CAS  Google Scholar 

  • Linsdell P, Gong X (2002) Multiple inhibitory effects of Au(CN) 2 ions on cystic fibrosis transmembrane conductance regulator Cl channel currents. J Physiol 540:29–38

    Article  PubMed  CAS  Google Scholar 

  • Linsdell P, Hanrahan JW (1996) Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a mammalian cell line and its regulation by a critical pore residue. J Physiol 496:687–693

    PubMed  CAS  Google Scholar 

  • Linsdell P, Hanrahan JW (1998) Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. J Gen Physiol 111:601–614

    Article  PubMed  CAS  Google Scholar 

  • Linsdell P, Zheng S-X, Hanrahan JW (1998) Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl channel expressed in mammalian cell lines. J Physiol 512:1–16

    Article  PubMed  CAS  Google Scholar 

  • Linsdell P, Evagelidis A, Hanrahan JW (2000) Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Biophys J 78:2973–2982

    Article  PubMed  CAS  Google Scholar 

  • Loo TW, Clarke DM (2006) Using a cysteine-less mutant to provide insight into the structure and mechanism of CFTR. J Physiol 572:312

    Article  PubMed  CAS  Google Scholar 

  • Mansoura MK, Smith SS, Choi AD, Richards NW, Strong TV, Drumm ML, Collins FS, Dawson DC (1998) Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore. Biophys J 74:1320–1332

    Article  PubMed  CAS  Google Scholar 

  • McCarty NA, Zhang Z-R (2001) Identification of a region of strong discrimination in the pore of CFTR. Am J Physiol Lung Cell Mol Physiol 281:L852–L867

    PubMed  CAS  Google Scholar 

  • McDonough S, Davidson N, Lester HA, McCarty NA (1994) Novel pore-lining residues in CFTR that govern permeation and open-channel block. Neuron 13:623–634

    Article  PubMed  CAS  Google Scholar 

  • Mense M, Vergani P, White DM, Altberg G, Nairn AC, Gadsby DC (2006) In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J 25:4728–4739

    Article  PubMed  CAS  Google Scholar 

  • Mio K, Ogura T, Mio M, Shimizu H, Hwang T-C, Sato C, Sohma Y (2008) Three-dimensional reconstruction of human cystic fibrosis transmembrane conductance regulator chloride channel revealed an ellipsoidal structure with orifices beneath the putative transmembrane domain. J Biol Chem 283:30300–30310

    Article  PubMed  CAS  Google Scholar 

  • Richards FM (1974) The interpretation of protein structures: total volume, group volume distributions and packing density. J Mol Biol 82:1–14

    Article  PubMed  CAS  Google Scholar 

  • Serrano JR, Liu X, Borg ER, Alexander CS, Shaw CF, Dawson DC (2006) CFTR: ligand exchange between a permeant anion ([Au(CN)2]) and an engineered cysteine (T338C) blocks the pore. Biophys J 91:1737–1748

    Article  PubMed  CAS  Google Scholar 

  • Sheppard DN, Rich DP, Ostedgaard LS, Gregory RJ, Smith AE, Welsh MJ (1993) Mutations in CFTR associated with mild-disease-form Cl channels with altered pore properties. Nature 362:160–164

    Article  PubMed  CAS  Google Scholar 

  • Smith SS, Liu X, Zhang Z-R, Sun F, Kriewall TE, McCarty NA, Dawson DC (2001) CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction. J Gen Physiol 118:407–431

    Article  PubMed  CAS  Google Scholar 

  • St. Aubin CN, Zhou J-J, Linsdell P (2007) Identification of a second blocker binding site at the cytoplasmic mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore. Mol Pharmacol 71:1360–1368

    Article  PubMed  CAS  Google Scholar 

  • Tabcharani JA, Linsdell P, Hanrahan JW (1997) Halide permeation in wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels. J Gen Physiol 110:341–354

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Loo TW, Bartlett MC, Clarke DM (2007) Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein. J Biol Chem 282:33247–33251

    Article  PubMed  CAS  Google Scholar 

  • Woodhull AM (1973) Ionic blockage of sodium channels in nerve. J Gen Physiol 61:687–708

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Drumm ML, Ma J, Davis PB (1995) Intracellular loop between transmembrane segments IV and V of cystic fibrosis transmembrane conductance regulator is involved in regulation of chloride channel conductance. J Biol Chem 270:28084–28091

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z-R, Zeltwanger S, McCarty NA (2000) Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes. J Membr Biol 175:35–52

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Aleksandrov LA, Zhao Z, Birtley JR, Riordan JR, Ford RC (2009) Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J Struct Biol 167:242–251

    Article  PubMed  CAS  Google Scholar 

  • Zhou J-J, Linsdell P (2009) Evidence that extracellular anions interact with a site outside the CFTR chloride channel pore to modify channel properties. Can J Physiol Pharmacol 87:387–395

    Article  PubMed  CAS  Google Scholar 

  • Zhou J-J, Li M-S, Qi J, Linsdell P (2010) Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore. J Gen Physiol 135:229–245

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Yassine El Hiani, Feng Qian and Wuyang Wang for assistance. This work was supported by the Canadian Institutes of Health Research. R. G. H. was supported by the Karen Lackey Summer Studentship Award from Cystic Fibrosis Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Linsdell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holstead, R.G., Li, MS. & Linsdell, P. Functional Differences in Pore Properties Between Wild-Type and Cysteine-Less Forms of the CFTR Chloride Channel. J Membrane Biol 243, 15 (2011). https://doi.org/10.1007/s00232-011-9388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00232-011-9388-0

Keywords

Navigation