Skip to main content
Log in

Epithelial Barrier Resistance is Increased by the Divalent Cation Zinc in Cultured MDCKII Epithelial Monolayers

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Topical zinc applications promote wound healing and epithelialization. “Leaky” MDCKII epithelia exposed to apical ZnCl2 (10 mM) showed a time-dependent increase (t 0.5 22.2 ± 2.7 min) of transepithelial resistance (R t) from 82.3 ± 2.4 Ω cm2 to 1,551 ± 225.6 Ω cm2; the increase was dose-dependent, being observed at 3 mM but not at 1 mM. Basal Zn2+ applications also increased epithelial resistance (at 10 mM to 323 ± 225.6 Ω cm2). The linear current–voltage relationship in control epithelia changed after apical 10 mM ZnCl2 to show rectification. Voltage deflections resulting from inward currents showed time-dependent relaxation (basal potential difference (p.d.)-positive), with outward currents being time-independent. Cation selectivity was tested after apical ZnCl2 elevated resistance; both the NaCl:mannitol (basal replacement) dilution p.d. and the choline:Na bi-ionic p.d. decreased (PNa/PCl from 4.9 to 2.3 and PNa/Pcholine from 3.8 to 2.1, respectively). Transepithelial paracellular basal to apical 45Ca fluxes increased approximately twofold when driven by a basal positive Na:NMDG bi-ionic p.d., but with basal 10 mM ZnCl2, 45Ca fluxes decreased approximately twofold. Neither ZO-1 nor occludin distribution was altered after ~2-h exposure to apical 10 mM ZnCl2. However, claudin-2, though present at the tight junction, increased within the cell. Increased epithelial barrier resistance by Zn2+ is due to modification of the paracellular pathway, most probably by multiple mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amuzescu B, Segal A, Flonta ML, Simaels J, Van Driessche W (2003) Zinc is a voltage-dependent blocker of native and heterologously expressed epithelial Na+ channels. Pflugers Arch 446:69–77

    CAS  PubMed  Google Scholar 

  • Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584

    Article  PubMed  Google Scholar 

  • Auld DS (2009) The ins and outs of biological zinc sites. Biometals 22:141–148

    Article  CAS  PubMed  Google Scholar 

  • Balkovetz DF, Chumley P, Amlal H (2009) Downregulation of claudin-2 expression in renal epithelial cells by metabolic acidosis. Am J Physiol Renal Physiol 297:F604–F611

    Article  CAS  PubMed  Google Scholar 

  • Blanchard A, Jeunemaitre X, Coudol P, Dechaux M, Froissart M, May A, Demontis R, Fournier A, Paillard M, Houillier P (2001) Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int 59:2206–2215

    CAS  PubMed  Google Scholar 

  • Brandner JM, Kief S, Grund C, Rendl M, Houdek P, Kuhn C, Tschachler E, Franke WW, Moll I (2002) Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur J Cell Biol 81:253–263

    Article  CAS  PubMed  Google Scholar 

  • Carr G, Haslam IS, Simmons NL (2006) Voltage dependence of transepithelial guanidine permeation across Caco-2 epithelia allows determination of the paracellular flux component. Pharm Res 23:540–548

    Article  CAS  PubMed  Google Scholar 

  • Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatini DD (1978) Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 77:853–880

    Article  CAS  PubMed  Google Scholar 

  • Colegio OR, Van Itallie C, Rahner C, Anderson JM (2003) Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol 284:C1346–C1354

    CAS  PubMed  Google Scholar 

  • Crane JK, Naeher TM, Shulgina I, Zhu CR, Boedeker EC (2007) Effect of zinc in enteropathogenic Escherichia coli infection. Infect Immun 75:5974–5984

    Article  CAS  PubMed  Google Scholar 

  • Fromter E (1972) Route of passive ion movement through epithelium of Necturus gallbladder. J Membr Biol 8:259

    Article  CAS  PubMed  Google Scholar 

  • Fromter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nat New Biol 235:9

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:263–272

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    Article  CAS  PubMed  Google Scholar 

  • Gitter AH, Bertog M, Schulzke J, Fromm M (1997) Measurement of paracellular epithelial conductivity by conductance scanning. Pflugers Arch 434:830–840

    Article  CAS  PubMed  Google Scholar 

  • Hille B (1972) Permeability of sodium channel to metal cations in myelinated nerve. J Gen Physiol 59:637

    Article  CAS  PubMed  Google Scholar 

  • Hoque KM, Sarker R, Guggino SE, Tse CM (2009) A new insight into pathophysiological mechanisms of zinc in diarrhea. Molecular structure and function of the tight junction: from basic mechanisms to clinical manifestations. Ann N Y Acad Sci 1165:279–284

    Article  CAS  PubMed  Google Scholar 

  • Jacquillet G, Barbier O, Cougnon M, Tauc M, Namorado MC, Martin D, Reyes JL, Poujeol P (2006) Zinc protects renal function during cadmium intoxication in the rat. Am J Physiol Renal Physiol 290:F127–F137

    Article  CAS  PubMed  Google Scholar 

  • Lansdown ABG, Mirastschijski U, Stubbs N, Scanlon E, Agren MS (2007) Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen 15:2–16

    Article  PubMed  Google Scholar 

  • Linley JE, Boese SH, Simmons NL, Gray MA (2009) A voltage-dependent Ca2+ influx pathway regulates the Ca2+-dependent Cl conductance of renal IMCD-3 cells. J Membr Biol 230:57–68

    Article  CAS  PubMed  Google Scholar 

  • Lo CM, Keese CR, Giaever I (1995) Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophys J 69:2800–2807

    Article  CAS  PubMed  Google Scholar 

  • Lukacik M, Thomas RL, Aranda JV (2008) A meta-analysis of the effects of oral zinc in the treatment of acute and persistent diarrhea. Pediatrics 121:326–336

    Article  PubMed  Google Scholar 

  • Moreno JH (1975) Blockage of gallbladder tight junction cation-selective channels by 2,4,6-triaminopyrimidinium (Tap). J Gen Physiol 66:97–115

    Article  CAS  PubMed  Google Scholar 

  • Ng B, Barry PH (1995) The measurement of ionic conductivities and mobilities of certain less common organic ions needed for junction potential corrections in electrophysiology. J Neurosci Methods 56:37–41

    Article  CAS  PubMed  Google Scholar 

  • Noshiro D, Asami K, Futaki S (2010) Metal-assisted channel stabilization: disposition of a single histidine on the N-terminus of alamethicin yields channels with extraordinarily long lifetimes. Biophys J 98:1801–1808

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou AC, Acharya KR, Shapiro R, Passalacqua EF, Brehm RD, Tranter HS (1995) Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site. Structure 3:769–779

    Article  CAS  PubMed  Google Scholar 

  • Piontek J, Winkler L, Wolburg H, Muller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE (2008) Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22:146–158

    Article  CAS  PubMed  Google Scholar 

  • Richardson JC, Scalera V, Simmons NL (1981) Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim Biophys Acta 673:26–36

    CAS  PubMed  Google Scholar 

  • Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133:4077–4082

    CAS  PubMed  Google Scholar 

  • Roy SK, Behrens RH, Haider R, Akramuzzaman SM, Mahalanabis D, Wahed MA, Tomkins AM (1992) Impact of zinc supplementation on intestinal permeability in Bangladeshi children with acute diarrhea and persistent diarrhea syndrome. J Pediatr Gastroenterol Nutr 15:289–296

    Article  CAS  PubMed  Google Scholar 

  • Sharir H, Zinger A, Nevo A, Sekler I, Hershfinkel M (2010) Zinc released from injured cells is acting via the Zn2+-sensing receptor, ZnR, to trigger signaling leading to epithelial repair. J Biol Chem 285:26097–26106

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Weber CR, Turner JR (2008) The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol 181:683–695

    Article  CAS  PubMed  Google Scholar 

  • Singh AB, Sugimoto K, Dhawan P, Harris RC (2007) Juxtacrine activation of EGFR regulates claudin expression and increases transepithelial resistance. Am J Physiol Cell Physiol 293:C1660–C1668

    Article  CAS  PubMed  Google Scholar 

  • Stevenson BR, Anderson JM, Goodenough DA, Mooseker MS (1988) Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. J Cell Biol 107:2401–2408

    Article  CAS  PubMed  Google Scholar 

  • Sturniolo GC, Fries W, Mazzon E, Di Leo V, Barollo M, D’Inca R (2002) Effect of zinc supplementation on intestinal permeability in experimental colitis. J Lab Clin Med 139:311–315

    Article  CAS  PubMed  Google Scholar 

  • Tang VW, Goodenough DA (2003) Paracellular ion channel at the tight junction. Biophys J 84:1660–1673

    Article  CAS  PubMed  Google Scholar 

  • Tsien RW, Hess P, McCleskey EW, Rosenberg RL (1987) Calcium channels: mechanisms of selectivity, permeation, and block. Annu Rev Biophys Biophys Chem 16:265–290

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Furuse M (2002) Claudin-based barrier in simple and stratified cellular sheets. Curr Opin Cell Biol 14:531–536

    Article  CAS  PubMed  Google Scholar 

  • Van Itallie CM, Fanning AS, Anderson JM (2003) Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol 285:F1078–F1084

    PubMed  Google Scholar 

  • Wright EM, Diamond JM (1968) Effects of pH and polyvalent cations on the selective permeability of gall-bladder epithelium to monovalent ions. Biochim Biophys Acta 163:57–74

    Article  CAS  PubMed  Google Scholar 

  • Yu AS, Cheng MH, Angelow S, Gunzel D, Kanzawa SA, Schneeberger EE, Fromm M, Coalson RD (2009) Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interaction site. J Gen Physiol 133:111–127

    Article  CAS  PubMed  Google Scholar 

  • Zhong W, McClain CJ, Cave M, Kang YJ, Zhou Z (2010) The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction. Am J Physiol Gastrointest Liver Physiol 298:G625–G633

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

GC was supported by a Kidney Research UK Career Development Fellowship and JAW by a BBSRC studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas L. Simmons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, G., Wright, J.A. & Simmons, N.L. Epithelial Barrier Resistance is Increased by the Divalent Cation Zinc in Cultured MDCKII Epithelial Monolayers. J Membrane Biol 237, 115–123 (2010). https://doi.org/10.1007/s00232-010-9312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9312-z

Keywords

Navigation