Skip to main content
Log in

Ontogeny of d-Mannose Transport and Metabolism in Rat Small Intestine

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Oral mannose therapy is used to treat congenital disorders of glycosylation caused by a deficiency in phosphomannose isomerase. The segmental distribution and ontogenic regulation of d-mannose transport, phosphomannose isomerase, and phosphomannose mutase is investigated in the small intestine of fetuses, newborn, suckling, 1-month-old, and adult rats. The small intestine transports d-mannose by both Na+-dependent and Na+-independent transport mechanisms. The activities of both systems normalized to intestinal weight peak at birth and thereafter they decreased. In all the ages tested, the activity of the Na+-independent mechanism was higher than that of the Na+/mannose transport system. At birth, the Na+-independent d-mannose transport in the ileum was significantly higher than that in jejunum. Phosphomannose isomerase activity and mRNA levels increased at 1 month, and the values in the ileum were lower than in jejunum. Phosphomannose mutase activity in jejunum increased during the early stages of life, and it decreased at 1 month old, as does the amount of mannose incorporated into glycoproteins, whereas in the ileum, they were not affected by age. The phosphomannose isomerase/phosphomannose mutase activity ratio decreased at birth and during the suckling period, and increased at 1 month old. In conclusion, intestinal d-mannose transport activity and metabolism were affected by ontogeny and intestinal segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alton G, Kjaergaard S, Etchison JR, Skovby F, Freeze HH (1997) Oral ingestion of mannose elevates blood mannose levels: a first step toward a potential therapy for carbohydrate-deficient glycoprotein syndrome type I. Biochem Mol Med 60:127–133

    Article  CAS  PubMed  Google Scholar 

  • Alton G, Hasilik M, Niehues R, Panneerselvam K, Etchison JR, Fana F, Freeze HH (1998) Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology 8:285–295

    Article  CAS  PubMed  Google Scholar 

  • Buddington RK, Elnif J, Puchal-Gardiner AA, Sangild PT (2001) Intestinal apical amino acid absorption during development of the pig. Am J Physiol Regul Integr Comp Physiol 280:R241–R247

    CAS  PubMed  Google Scholar 

  • Burant CF, Takeda J, Brot-Laroche E, Bell GI, Davidson NO (1992) Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem 267:14523–14526

    CAS  PubMed  Google Scholar 

  • Cano M, Calonge ML, Peral MJ, Ilundáin AA (2001) A Na+-dependent d-mannose transporter at the apical membrane of chicken small intestine. Pflügers Archiv 441:686–691

    Article  CAS  PubMed  Google Scholar 

  • Cano M, Peral MJ, Calonge ML, Ilundáin AA (2005) Ontogeny of small intestine mannose transport and metabolism. J Physiol Biochem 61:189

    Google Scholar 

  • Cromphout K, Vleugels W, Heykants L, Schollen E, Keldermans L, Sciot R, D’Hooge R, De Deyn PP, von Figura K, Hartmann D, Körner C, Matthijs G (2006) The normal phenotype of Pmm1-deficient mice suggests that Pmm1 is not essential for normal mouse development. Mol Cell Biol 15:5621–5635

    Article  Google Scholar 

  • Davis JA, Freeze HH (2001) Studies of mannose metabolism and effects of long-term mannose ingestion in the mouse. Biochim Biophys Acta 1528:116–126

    CAS  PubMed  Google Scholar 

  • Davis JA, Wu X, Wang L, DeRossi C, Westphal V, Wu R, Alton G, Srikrishna G, Freeze HH (2002) Molecular cloning, gene organization, and expression of mouse Mpi encoding phosphomannose isomerase. Glycobiology 12:435–442

    Article  CAS  PubMed  Google Scholar 

  • de Koning TJ, Dorland L, van Diggelen OP, Boonman AM, de Jong GJ, van Noort WL, De Schryver J, Duran M, van den Berg IE, Gerwig GJ, Berger R, Poll-The BT (1998) A novel disorder of N-glycosylation due to phosphomannose isomerase deficiency. Biochem Biophys Res Commun 245:38–42

    Article  PubMed  Google Scholar 

  • De la Horra MC, Cano M, Peral MJ, García-Delgado M, Durán JM, Calonge ML, Ilundáin AA (2001) Na+-dependent d-mannose transport at the apical membrane of rat small intestine and kidney cortex. Biochim Biophys Acta 1512:225–230

    Article  PubMed  Google Scholar 

  • Dudeja PK, Wali RK, Harig JM, Brasitus TA (1991) Characterization and modulation of rat small intestinal brush-border membrane transbilayer fluidity. Am J Physiol 260:G586–G594

    CAS  PubMed  Google Scholar 

  • Durán JM, Cano M, Peral MJ, Ilundain AA (2004) d-Mannose transport and metabolism in isolated enterocytes. Glycobiology 14:495–500

    Article  PubMed  Google Scholar 

  • Ferraris RP (2001) Dietary and developmental regulation of intestinal sugar transport. Biochem J 360:265–276

    Article  CAS  PubMed  Google Scholar 

  • Ferraris RP, Diamond J (1997) Regulation of intestinal sugar transport. Physiol Rev 77:257–302

    CAS  PubMed  Google Scholar 

  • Freeze HH (2001) Update and perspectives on congenital disorders of glycosylation. Glycobiology 11:129–143

    Article  Google Scholar 

  • Fujita N, Tamura A, Higashidani A, Tonozuka T, Freeze HH, Nishikawa A (2008) The relative contribution of mannose salvage pathways to glycosylation in PMI-deficient mouse embryonic fibroblast cells. FEBS J 275:788–798

    Article  CAS  PubMed  Google Scholar 

  • García-Delgado M, García-Miranda P, Peral MJ, Calonge ML, Ilundáin AA (2007) Ontogeny up-regulates renal Na+/Cl/creatine transporter in rat. Biochim Biophys Acta 1768:2841–2848

    Article  PubMed  Google Scholar 

  • Heykants L, Schollen E, Grünewald S, Matthijs G (2001) Identification and localization of two mouse phosphomannomutase genes, Pmm1 and Pmm2. Gene 270:53–59

    Article  CAS  PubMed  Google Scholar 

  • Jaeken J, Matthijs G, Saudubray JM, Dionisi-Vici C, Bertini E, de Lonlay P, Henri H, Carchon H, Schollen E, Van Schaftingen E (1998) Phosphomannose isomerase deficiency: a carbohydrate-deficient glycoprotein syndrome with hepatic-intestinal presentation. Am J Hum Genet 62:1535–1539

    Article  CAS  PubMed  Google Scholar 

  • Matthijs G, Schollen E, Pirard M, Budarf ML, Van Schaftingen E, Cassiman JJ (1997a) PMM (PMM1), the human homologue of SEC53 or yeast phosphomannomutase, is localized on chromosome 22q13. Genomics 40:41–47

    Article  CAS  PubMed  Google Scholar 

  • Matthijs G, Schollen E, Pardon E, Veiga-Da-Cunha M, Jaeken J, Cassiman JJ, Van Schaftingen E (1997b) Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet 16:88–92 (Erratum in: Nat Genet 16:316)

    Article  CAS  PubMed  Google Scholar 

  • Mendelssohn DC, Silverman M (1989) A d-mannose transport system in renal brush-border membranes. Am J Physiol 257:F1100–F1107

    CAS  PubMed  Google Scholar 

  • Niehues R, Hasilik M, Alton G, Körner C, Schiebe-Sukumar M, Koch HG, Zimmer KP, Wu R, Harms E, Reiter K, von Figura K, Freeze HH, Harms HK, Marquardt T (1998) Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest 101:1414–1420

    Article  CAS  PubMed  Google Scholar 

  • Ogier-Denis E, Blais A, Houri JJ, Voisin T, Trugnan G, Codogno P (1994) The emergence of a basolateral 1-deoxymannojirimycin-sensitive mannose carrier is a function of intestinal epithelial cell differentiation. Evidence for a new inhibitory effect of 1-deoxymannojirimycin on facilitative mannose transport. J Biol Chem 269:4285–4290

    CAS  PubMed  Google Scholar 

  • Peral MJ, Gálvez M, Soria ML, Ilundáin AA (2005) Developmental decrease in rat small intestinal creatine uptake. Mech Ageing Dev 126:523–530

    Article  CAS  PubMed  Google Scholar 

  • Pirard M, Achouri Y, Collet J-F, Schollen E, Matthijs G, Van Schaftingen V (1999) Kinetic properties and tissular distribution of mammalian phosphomannomutase isozymes. Biochem J 339:201–220

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez P, Rivas CI, Godoy A, Villanueva M, Fischbarg J, Vera JC, Reyes AM (2005) Redefining the facilitated transport of mannose in human cells: absence of a glucose-insensitive, high-affinity facilitated mannose transport system. Biochemistry 44:313–320

    Article  PubMed  Google Scholar 

  • Schwarz SM, Hostetler B, Ling S, Mone M, Watkins JB (1985) Intestinal membrane lipid composition and fluidity during development in the rat. Am J Physiol 248:G200–G207

    CAS  PubMed  Google Scholar 

  • Smith MW (1988) Postnatal development of transport function in the pig intestine. Comp Biochem Physiol A Comp Physiol 90:577–582

    Article  CAS  PubMed  Google Scholar 

  • Somogy M (1945) Determination of blood sugar. J Biol Chem 160:69–73

    Google Scholar 

  • Thiel C, Lübke T, Matthijs G, von Figura K, Körner C (2006) Targeted disruption of the mouse phosphomannomutase 2 gene causes early embryonic lethality. Mol Cell Biol 26:5615–5620

    Article  CAS  PubMed  Google Scholar 

  • Uldry M, Ibberson M, Hosokawa M, Thorens B (2002) GLUT2 is a high affinity glucosamine transporter. FEBS Lett 524:199–203

    Article  CAS  PubMed  Google Scholar 

  • Veiga-da-Cunha M, Vleugels W, Maliekal P, Matthijs G, Schaftingen EV (2008) Mammalian phosphomannomutase PMM1 is the brain IMP-sensitive glucose-1, 6-bisphosphatase. J Biol Chem 283:33988–33993

    Article  CAS  PubMed  Google Scholar 

  • Westphal V, Kjaergaard S, Davis JA, Peterson SM, Skovby F, Freeze HH (2001) Genetic and metabolic analysis of the first adult with congenital disorder of glycosylation type Ib: long-term outcome and effects of mannose supplementation. Mol Genet Metab 73:77–85

    Article  CAS  PubMed  Google Scholar 

  • Yu RJ, Mellor DJ, Tungthanathanich P, Birtles MJ, Reynolds GW, Simpson HV (1992) Growth, and morphological changes in the small, and the large intestine in piglets during the first three days after birth. J Dev Physiol 18:161–172

    Google Scholar 

Download references

Acknowledgments

This work was supported by grant MCyT-BFU 2006-00720. The group is member of the Network for Cooperative Research on Membrane Transport Proteins (REIT), cofunded by MCyT, Spain, and the European Regional Development Fund (ERDF) (grant BFU2007-30688-E/BFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anunciación A. Ilundain.

Additional information

A preliminary report of some of these results was published in abstract form (Cano et al. 2005).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cano, M., Ilundain, A.A. Ontogeny of d-Mannose Transport and Metabolism in Rat Small Intestine. J Membrane Biol 235, 101–108 (2010). https://doi.org/10.1007/s00232-010-9259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9259-0

Keywords

Navigation