Skip to main content
Log in

Examining the Origins of the Hydration Force Between Lipid Bilayers Using All-Atom Simulations

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Using 237 all-atom double bilayer simulations, we examined the thermodynamic and structural changes that occur as a phosphatidylcholine lipid bilayer stack is dehydrated. The simulated system represents a micropatch of lipid multilayer systems that are studied experimentally using surface force apparatus, atomic force microscopy and osmotic pressure studies. In these experiments, the hydration level of the system is varied, changing the separation between the bilayers, in order to understand the forces that the bilayers feel as they are brought together. These studies have found a curious, strongly repulsive force when the bilayers are very close to each other, which has been termed the “hydration force,” though the origins of this force are not clearly understood. We computationally reproduce this repulsive, relatively free energy change as bilayers come together and make qualitative conclusions as to the enthalpic and entropic origins of the free energy change. This analysis is supported by data showing structural changes in the waters, lipids and salts that have also been seen in experimental work. Increases in solvent ordering as the bilayers are dehydrated are found to be essential in causing the repulsion as the bilayers come together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdulreda MH, Moy VT (2007) Atomic force microscope studies of the fusion of floating lipid bilayers. Biophys J 92:4369–4378

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B, Seelig J (1991) Conformational changes of the phosphatidylcholine headgroup due to membrane dehydration: a H-2-NMR study. Chem Phys Lipids 58:1–5

    Article  CAS  PubMed  Google Scholar 

  • Bhide S, Berkowitz M (2005) Structure and dynamics of water at the interface with phospholipid bilayers. J Chem Phys 123:224702

    Article  PubMed  Google Scholar 

  • Bhide S, Berkowitz M (2006) The behavior of reorientational correlation functions of water at the water–lipid bilayer interface. J Chem Phys 125:094713

    Article  PubMed  Google Scholar 

  • Binder H, Kohlstrunk B, Heerklotz H (1999) Hydration and lyotropic melting of amphiphilic molecules: a thermodynamic study using humidity titration calorimetry. J Colloid Interface Sci 220:235–249

    Article  CAS  PubMed  Google Scholar 

  • Böckmann R, Hac A, Heimburg T, Grubmüller H (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655

    Article  PubMed  Google Scholar 

  • Brooks B, Bruccoleri R, Olafson B, States D, Swaminathan S, Karplus M (1983) CHARMM—a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Choudhury N, Pettitt B (2005) Dynamics of water trapped between hydrophobic solutes. J Phys Chem B 109:6422–6429

    Article  CAS  PubMed  Google Scholar 

  • De Loof H, Nilsson L, Rigler R (1992) Molecular dynamics simulation of galanin in aqueous and nonaqueous solution. J Am Chem Soc 114:4028–4035

    Article  Google Scholar 

  • Derjaguin BV, Landau L (1941) Theory of stability of highly charged lyophobic sols and adhesion of highly charged particles in solutions of electrolytes. Acta Physicochim URSS 14:633–652

    Google Scholar 

  • Essmann U, Berkowitz M (1999) Dynamical properties of phospholipid bilayers from computer simulation. Biophys J 76:2081–2089

    Article  CAS  PubMed  Google Scholar 

  • Feller SE, MacKerell AD (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104:7510–7515

    Article  CAS  Google Scholar 

  • Feller SE, Gawrisch K, MacKerell AD (2002) Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124:318–326

    Article  CAS  PubMed  Google Scholar 

  • Gaede HC, Gawrisch K (2003) Lateral diffusion rates of lipid, water, and a hydrophobic drug in a multilamellar liposome. Biophys J 85:1734–1740

    Article  CAS  PubMed  Google Scholar 

  • Gurtovenko A (2005) Asymmetry of lipid bilayers induced by monovalent salt: atomistic molecular dynamics study. J Chem Phys 122:244902

    Article  PubMed  Google Scholar 

  • Helfrich W (1978) Steric interaction of fluid membranes in multilayer systems. Z Naturforsch 33:305–315

    Google Scholar 

  • Hockney R, Eastwood J (1989) Computer simulation using particles. Taylor & Francis, New York

    Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14:33–39

    Article  CAS  Google Scholar 

  • Israelachvili JN (1985) Intermolecular and surface forces. Academic Press, San Diego

    Google Scholar 

  • Israelachvili JN, Wennerstroem H (1990) Hydration or steric forces between amphiphilic surfaces. Langmuir 6:873–876

    Article  CAS  Google Scholar 

  • Israelachvili JN, Wennerstroem H (1992) Entropic forces between amphiphilic surfaces in liquids. J Phys Chem 96:520–531

    Article  CAS  Google Scholar 

  • Israelachvili JN, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kučerka N, Tristram-Nagle S, Nagle J (2006) Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J Membr Biol 208:193–202

    Article  Google Scholar 

  • Lazaridis T (1998) Inhomogeneous fluid approach to solvation thermodynamics. 1. Theory. J Phys Chem B 102:3531–3541

    Article  CAS  Google Scholar 

  • Leikin S, Parsegian VA, Rau DC, Rand RP (1993) Hydration forces. Annu Rev Phys Chem 44:369–395

    Article  CAS  PubMed  Google Scholar 

  • LeNeveu DM, Rand RP, Parsegian VA, Gingell D (1977) Measurement and modification of forces between lecithin bilayers. Biophys J 18:209–230

    Article  CAS  PubMed  Google Scholar 

  • Manciu M, Ruckenstein E (2001) Free energy and thermal fluctuations of neutral lipid bilayers. Langmuir 17:2455–2463

    Article  CAS  Google Scholar 

  • Marcelja S, Radic N (1976) Repulsion of interfaces due to boundary water. Chem Phys Lett 42:129–130

    Article  CAS  Google Scholar 

  • Markova N, Sparr E, Wadso L, Wennerstrom H (2000) A calorimetric study of phospholipid hydration. Simultaneous monitoring of enthalpy and free energy. J Phys Chem B 104:8053–8060

    Article  CAS  Google Scholar 

  • Marra J, Israelachvili J (1985) Direct measurements of forces between phosphatidylcholine and phosphatidyethanolamine bilayers in aqueous-electroylyte solutions. Biochemistry 24:4608–4618

    Article  CAS  PubMed  Google Scholar 

  • Mashl RJ, Scott HL, Subramaniam S, Jakobsson E (2001) Molecular simulation of dioleoylphosphatidylcholine lipid bilayers at differing levels of hydration. Biophys J 81:3005–3015

    Article  CAS  PubMed  Google Scholar 

  • Mills R (1973) Self-diffusion in normal and heavy-water in range 1–45 degrees. J Phys Chem 77:685–688

    Article  CAS  Google Scholar 

  • Parsegian VA, Fuller N, Rand RP (1979) Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci USA 76:2750–2754

    Article  CAS  PubMed  Google Scholar 

  • Pasenkiewicz-Gierula M, Takaoka Y, Miyagawa H, Kitamura K, Kusumi A (1997) Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: location, geometry, and lipid-lipid bridging via hydrogen-bonded water. J Phys Chem A 101:3677–3691

    Article  CAS  Google Scholar 

  • Pera I, Stark R, Kappl M, Butt HJ, Benfenati F (2004) Using the atomic force microscope to study the interaction between two solid supported lipid bilayers and the influence of synapsin I. Biophys J 87:2446–2455

    Article  CAS  PubMed  Google Scholar 

  • Pertsin A, Platonov D, Grunze M (2007) Origin of short-range repulsion between hydrated phospholipid bilayers: a computer simulation study. Langmuir 23:1388–1393

    Article  CAS  PubMed  Google Scholar 

  • Petrache H, Gouliaev N, Tristram-Nagle S, Zhang R, Suter R, Nagle J (1998) Interbilayer interactions from high-resolution X-ray scattering. Phys Rev E 57:7014–7024

    Article  CAS  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  • Podgornik R, Parsegian V (1992) Thermal mechanical fluctuations of fluid membranes in confined geometries—the case of soft confinement. Langmuir 8:557–562

    Article  CAS  Google Scholar 

  • Podgornik R, French R, Parsegian V (2006) Nonadditivity in van der Waals interactions within multilayers. J Chem Phys 124:044709

    Article  CAS  PubMed  Google Scholar 

  • Rand R, Parsegian VA (1989) Hydration forces between phospholipid-bilayers. Biochim Biophys Acta 988:351–376

    CAS  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of cartesian equations of motion of a system with constraints molecular dynamics of N-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Sachs J, Crozier PS, Woolf TB (2004a) Atomistic simulations of biologically realistic transmembrane potential gradients. J Chem Phys 121:10847–10851

    Article  CAS  PubMed  Google Scholar 

  • Sachs J, Nanda H, Petrache H, Woolf T (2004b) Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts: molecular dynamics simulations. Biophys J 86:3772–3782

    Article  CAS  PubMed  Google Scholar 

  • Sackmann E (1995) An empirical potential energy function for phospholipids: criteria for parameter optimization and applications. In: Lipowsky RAS (ed) Handbook of biological physics, vol 1A. Elsevier, Amsterdam, p 213

  • Schlenkrich MJ, Brickman J, MacKerell AD, Karplus M (1996) Physical basis of self-organization and function of membranes: physics of vesicles. In: Mertz KM, Roux B (eds) Biological membranes: a molecular perspective from computation and experiment. Birkhäuser, Boston, p 31

    Google Scholar 

  • Scodinu A, Fourkas JT (2002) Comparison of the orientational dynamics of water confined in hydrophobic and hydrophilic nanopores. J Phys Chem B 106:10292–10295

    Article  CAS  Google Scholar 

  • Sornette D, Ostrowsky N (1986) Importance of membrane fluidity on bilayer interactions. J Chem Phys 84:4062–4067

    Article  CAS  Google Scholar 

  • Stevens MJ, Hoh J, Woolf T (2003) Insights into the molecular mechanism of membrane fusion from simulation: evidence for the association of splayed tails. Phys Rev Lett 91:188102

    Article  PubMed  Google Scholar 

  • Ulrich AS, Watts A (1994) Molecular response of the lipid headgroup to bilayer hydration monitored by H-2-NMR. Biophys J 66:1441–1449

    Article  CAS  PubMed  Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, New York

    Google Scholar 

  • Volke F, Eisenblatter S, Galle J, Klose G (1994) Dynamic properties of water at phosphatidylcholine lipid–bilayer surfaces as seen by deuterium and pulsed field gradient proton NMR. Chem Phys Lipids 70:121–131

    Article  CAS  PubMed  Google Scholar 

  • Zwanzig RW (1954) High-temperature equation of state by a perturbation method 1. Nonpolar gases. J Chem Phys 22:1420–1426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Scott Feller for providing our initial POPC structure. We acknowledge support from NIH under R21GM076443 and R01GM064746. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was completed in 2009 as part of the PhD research of Anastasia Gentilcore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas B. Woolf.

Additional information

All authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentilcore, A.N., Michaud-Agrawal, N., Crozier, P.S. et al. Examining the Origins of the Hydration Force Between Lipid Bilayers Using All-Atom Simulations. J Membrane Biol 235, 1–15 (2010). https://doi.org/10.1007/s00232-010-9249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9249-2

Keywords

Navigation