Skip to main content
Log in

Effect of Cholesterol Depletion and Temperature on the Isolation of Detergent-Resistant Membranes from Human Erythrocytes

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Transient lateral microdomains or lipid rafts play important roles in many physiological membrane-mediated cell processes. Detergent-resistant membranes (DRMs) are good models for the study of lipid rafts. Here we report that DRMs can be obtained by treating human erythrocytes with the nonionic detergents Triton X-100 or octaethylene glycol monododecyl ether (C12E8) at 37°C, and by treatment at 4°C of cholesterol-depleted erythrocytes. Electron paramagnetic resonance with spin labels inserted at different membrane depths (5- and 16-doxyl stearic acids, 5-SASL and 16-SASL) were used to measure the order parameter (S) of the cell membranes and DRMs. We previously reported significantly higher S values in DRMs with respect to intact erythrocyte membranes. Here we show that higher S values were still measurable in DRMs prepared from intact erythrocytes at 37°C, or from cholesterol-depleted cells at 4°C, for both detergents. For 5-SASL only, increased S values were measured in 4°C DRMs obtained from cholesterol-depleted versus intact erythrocytes. Flotillin-2, a protein marker of lipid rafts, was found in DRMs from intact cells in trace amounts but it was sensitively increased in C12E8 DRMs prepared at 4°C from cholesterol-depleted erythrocytes, while the membrane-skeletal proteins spectrin and actin were excluded from both Triton X-100 and C12E8 DRMs. However, contrary to the 4°C treatment results, flotillin-2 and stomatin were not resistant to Triton X-100 and C12E8 treatment at physiological temperature. The role of cholesterol in DRMs formation is discussed and the results presented provide further support for the use of C12E8 to the study of DRMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Free cholesterol in human red blood cells is 3.15 μmol/ml cells, while total lipid phosphorus is 3.90 μmol/ml cells (Dodge and Phillips 1967). Cholesterol is therefore present in the cell membrane at approximately 45 mol% with respect to total lipids. In DRMs from normal cells, we have 30% of the cell cholesterol, corresponding to approximately 0.945 μmol (per milliliter of cells). If we assume that the sphingolipid-enriched, detergent-resistant phase early described in the literature (before the notion of lipid rafts was introduced) contained what we now call DRMs (and can be released from the membrane skeleton only by treatment with carbonate), then the sphingomyelin in the detergent-resistant portion of the erythrocyte, obtained with Triton X-100 at concentrations comparable to those we used, corresponds approximately to 70–80% of the cell sphingomyelin (Yu et al. 1973; Sheetz 1979). Because the latter corresponds to 25 mol% of total cell lipid phosphorus (Dodge and Phillips 1967), it amounts to 1.0 μmol (per milliliter of cells), and its content in the DRMs should be approximately 0.7–0.8 μmol. Therefore, the cholesterol percentage with respect to the total of DRM lipids (i.e., sphingomyelin plus cholesterol, with the reasonable approximation that the other phospholipids are present in DRMs in much lower amount) is 54–57%.

References

  • An X, Guo X, Liu S, Lux SE, Baines A, Gratzer W, Mohandas N (2005) Identification and functional characterization of protein 4.1R and actin-binding sites in erythrocyte beta spectrin: regulation of the interactions by phosphatidylinositol-4,5-bisphosphate. Biochemistry 44:10681–10688

    Article  CAS  PubMed  Google Scholar 

  • An X, Zhang X, Debnath G, Baines AJ, Mohandas N (2006) Phosphatidylinositol-4,5-biphosphate (PIP2) differentially regulates the interaction of human erythrocyte protein 4.1 (4.1R) with membrane proteins. Biochemistry 45:5725–5732

    Article  CAS  PubMed  Google Scholar 

  • Anderson RG, Jacobson K (2002) A role for lipid shells in targeting proteins to caveolae, rafts and other lipid domains. Science 296:1821–1825

    Article  CAS  PubMed  Google Scholar 

  • Beutler E, West C, Blume KG (1976) The removal of leukocytes and platelets from whole blood. J Lab Clin Med 88:328–333

    CAS  PubMed  Google Scholar 

  • Brown DA (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology 21:430–439

    Article  CAS  PubMed  Google Scholar 

  • Brown DA (2007) Analysis of raft affinity of membrane proteins by detergent-insolubility. In: McIntosh TJ (ed) Methods in molecular biology. Lipid rafts. Humana Press, Totowa, NJ, pp 1–7

    Google Scholar 

  • Brown DA, London E (1998a) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998b) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  • Cassera MB, Silber AM, Gennaro AM (2002) Differential effects of cholesterol on acyl chain order in erythrocyte membranes as a function of depth from the surface. An electron paramagnetic resonance (EPR) spin label study. Biophys Chem 99:117–127

    CAS  PubMed  Google Scholar 

  • Ciana A, Balduini C, Minetti G (2005) Detergent-resistant membranes in human erythrocytes and their connection to the membrane-skeleton. J Biosci 30:317–328

    Article  CAS  PubMed  Google Scholar 

  • Crepaldi Domingues C, Ciana A, Buttafava A, Balduini C, de Paula E, Minetti G (2009) Resistance of human erythrocyte membranes to Triton X-100 and C12E8. J Membr Biol 227:39–48

    Article  CAS  PubMed  Google Scholar 

  • Delaunay JL, Breton M, Godine JW, Trugnan G, Maurice M (2007) Differential detergent resistance of the apical and basolateral NPPases: relationship with polarized targeting. J Cell Sci 120:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Diakowski W, Ozimek Ł, Bielska E, Bem S, Langner M, Sikorski AF (2006) Cholesterol affects spectrin-phospholipid interactions in a manner different from changes resulting from alterations in membrane fluidity due to fatty acyl chain composition. Biochim Biophys Acta 1758:4–12

    Article  CAS  PubMed  Google Scholar 

  • Dietrich C, Volovyk ZN, Levi M, Thompson NL, Jacobson K (2001) Partitioning of Thy-1, GM1 and crosslinked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc Natl Acad Sci USA 98:10642–10647

    Article  CAS  PubMed  Google Scholar 

  • Dietrich C, Yang B, Fujiwara T, Kusumi A, Jacobson K (2002) Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys J 82:274–284

    Article  CAS  PubMed  Google Scholar 

  • Dodge JT, Phillips GB (1967) Composition of phospholipids and of phospholipid fatty acids and aldehydes in human red cells. J Lipid Res 8:667–675

    CAS  PubMed  Google Scholar 

  • Fraceto LF, Pinto Lde M, Franzoni L, Braga AA, Spisni A, Schreier S, de Paula E (2002) Spectroscopic evidence for a preferential location of lidocaine inside phospholipid bilayers. Biophys Chem 99:229–243

    Article  CAS  PubMed  Google Scholar 

  • Fragoso R, Ren D, Zhang X, Su MW, Burakoff SJ, Jin YJ (2003) Lipid raft distribution of CD4 depends on its palmitoylation and association with Lck, and evidence for CD4-induced lipid raft aggregation as an additional mechanism to enhanced CD3 signaling. J Immunol 170:913–921

    CAS  PubMed  Google Scholar 

  • Godici PE, Landsberger FR (1974) Dynamics structure of lipid-membranes: C13 nuclear magnetic resonance study using spin labels. Biochemistry 13:362–368

    Article  CAS  PubMed  Google Scholar 

  • Hägerstrand H, Isomaa B (1989) Vesiculation induced by amphiphiles in erythrocytes. Biochim Biophys Acta 982:179–186

    Article  PubMed  Google Scholar 

  • Hägerstrand H, Isomaa B (1992) Morphological characterization of exovesicles and endovesicles released from human erythrocytes after treatment with amphiphiles. Biochim Biophys Acta 1109:117–126

    Article  PubMed  Google Scholar 

  • Hägerstrand H, Kralj-Iglic V, Fošnarič M, Bobrowska-Hägerstrand M, Wróbel A, Mrówczyńska L, Söderstöm T, Iglič A (2004) Endovesicle formation and membrane perturbation induced by polyoxyethyleneglycolalkylethers in human erythrocytes. Biochim Biophys Acta 1665:191–200

    Article  PubMed  Google Scholar 

  • Hubbel WL, McConnel HM (1971) Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc 93:314–326

    Article  Google Scholar 

  • Ilangumaran S, Hoessli DC (1998) Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J 335:433–440

    CAS  PubMed  Google Scholar 

  • Ilangumaran S, Arni S, van Echten-Decker G, Borisch B, Hoessli DC (1999) Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol Biol Cell 10:891–905

    CAS  PubMed  Google Scholar 

  • Kessel A, Ben-Tal N, May S (2001) Interactions of cholesterol with lipid bilayers: the preferred configuration and fluctuations. Biophys J 81:643–658

    Article  CAS  PubMed  Google Scholar 

  • Koumanov KS, Tessier C, Momchilova AB, Rainteau D, Wolf C, Quinn PJ (2005) Comparative lipid analysis and structures of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes. Arch Biochem Biophys 434:150–158

    Article  CAS  PubMed  Google Scholar 

  • Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP, Edidin M (2003) Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc Natl Acad Sci USA 100:13964–13969

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685

    Article  CAS  Google Scholar 

  • Lichtenberg D, Goni FM, Heerklotz H (2005) Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem Sci 30:430–436

    Article  CAS  PubMed  Google Scholar 

  • London E, Brown DA (2000) Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta 1508:182–195

    Article  CAS  PubMed  Google Scholar 

  • Matkó J, Bodnár A, Vereb G, Bene L, Vámosi G, Szentesi G, Szöllösi J, Gáspár R, Horejsi V, Waldmann TA, Damjanovich S (2002) GPI-microdomains (membrane rafts) and signaling of the multi-chain interleukin-2 receptor in human lymphoma/leukemia T cell lines. Eur J Biochem 269:1199–2008

    Article  PubMed  Google Scholar 

  • Murphy SC, Samuel BU, Harrison T, Speicher KD, Speicher DW, Reid ME, Prohaska R, Low PS, Tanner MJ, Mohandas N, Haldar K (2004) Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malaria infection. Blood 103:1920–1928

    Article  CAS  PubMed  Google Scholar 

  • Neumann-Giesen C, Falkenbach B, Beicht P, Claasen S, Lüers G, Stuermer CA, Herzog V, Tikkanen R (2004) Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem J 378:509–518

    Article  CAS  PubMed  Google Scholar 

  • Nishijo J, Moriyama S, Shiota S (2003) Interactions of cholesterol with cyclodextrins in aqueous solution. Chem Pharm Bull 51:1253–1257

    Article  CAS  PubMed  Google Scholar 

  • Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J (1989) Differential effects of α-, β- and γ-cyclodextrins on human erythrocytes. Eur J Biochem 186:17–22

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    Article  CAS  PubMed  Google Scholar 

  • Preté PSC, Gomes K, Malheiros SVP, Meirelles NC, de Paula E (2002) Solubilization of human erythrocyte membranes by non-ionic surfactants of the polyoxyethylene alkyl ethers series. Biophys Chem 97:45–54

    Article  PubMed  Google Scholar 

  • Radhakrishnan A, Li XM, Brown RE, McConnell HM (2001) Stoichiometry of cholesterol–sphingomyelin condensed complexes in monolayers. Biochim Biophys Acta 1511:1–6

    Article  CAS  PubMed  Google Scholar 

  • Rietveld A, Simons K (1998) The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta 1376:467–479

    CAS  PubMed  Google Scholar 

  • Rivas MG, Gennaro AM (2003) Detergent resistant domains in erythrocyte membranes survive after cell cholesterol depletion: an EPR spin label study. Chem Phys Lipids 122:165–169

    Article  CAS  PubMed  Google Scholar 

  • Rodi PM, Trucco VM, Gennaro AM (2008) Factors determining detergent resistance of erythrocyte membranes. Biophys Chem 135:14–18

    Article  CAS  PubMed  Google Scholar 

  • Rose HG, Oklander M (1965) Improved procedure for the extraction of lipids from human erythrocytes. J Lipid Res 6:428–431

    CAS  PubMed  Google Scholar 

  • Salzer U, Prohaska R (2001) Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97:1141–1143

    Article  CAS  PubMed  Google Scholar 

  • Samuel BU, Mohandas N, Harrison T, McManus H, Rosse W, Reid M, Haldar K (2001) The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J Biol Chem 276:29319–29329

    Article  CAS  PubMed  Google Scholar 

  • Schreier S, Polnaszek CF, Smith ICP (1978) Spin labels in membranes. Biochim Biophys Acta 515:375–436

    Google Scholar 

  • Schroeder R, London E, Brown DA (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and GPI-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci USA 91:12130–12134

    Article  CAS  PubMed  Google Scholar 

  • Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci USA 100:5795–5800

    Article  CAS  PubMed  Google Scholar 

  • Sheetz MP (1979) Integral membrane protein interaction with Triton cytoskeletons of erythrocytes. Biochim Biophys Acta 557:122–134

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struc 33:269–295

    Article  CAS  Google Scholar 

  • Vazquez MJ, Rivas MG, Gennaro AM (2002) Modification of cholesterol content in human red cell membranes by using methyl-β-cyclodextrin: time evolution and cell shape changes. Rev FABICIB 6:121–127

    Google Scholar 

  • Warren RC (1987) Physics and architecture of cell membranes. Adam-Hilger, Bristol

    Google Scholar 

  • Wilkinson DK, Turner EJ, Parkin ET, Garner AE, Harrison PJ, Crawford M, Stewart GW, Hooper NM (2007) Membrane raft actin deficiency and altered Ca2+-induced vesiculation in stomatin-deficient overhydrated hereditary stomatocytosis. Biochim Biophys Acta 1778:125–132

    PubMed  Google Scholar 

  • Xu X, London E (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39:843–849

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Fischman DA, Steck TL (1973) Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1:233–248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by PRIN funds of the “Ministero dell’Università e della Ricerca,” Italy, and FAPESP (Proc. 09/00904-1), Brazil. CCD acknowledges the fellowships from CAPES (Proc. 3597/06-7) and CNPq (Proc. 141618/2005-1), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampaolo Minetti.

Additional information

C. C. Domingues and A. Ciana have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domingues, C.C., Ciana, A., Buttafava, A. et al. Effect of Cholesterol Depletion and Temperature on the Isolation of Detergent-Resistant Membranes from Human Erythrocytes. J Membrane Biol 234, 195–205 (2010). https://doi.org/10.1007/s00232-010-9246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9246-5

Keywords

Navigation